释义 |
- References
In mathematical finite group theory, the uniqueness case is one of the three possibilities for groups of characteristic 2 type given by the trichotomy theorem. The uniqueness case covers groups G of characteristic 2 type with e(G) ≥ 3 that have an almost strongly p-embedded maximal 2-local subgroup for all primes p whose 2-local p-rank is sufficiently large (usually at least 3). {{harvs|txt|last=Aschbacher|year1=1983a|year2=1983b}} proved that there are no finite simple groups in the uniqueness case.References- {{Citation | last1=Aschbacher | first1=Michael | author1-link=Michael Aschbacher | title=The uniqueness case for finite groups. I | doi=10.2307/2007081 | mr=690850 | year=1983a | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=117 | issue=2 | pages=383–454}}
- {{Citation | last1=Aschbacher | first1=Michael | author1-link=Michael Aschbacher | title=The uniqueness case for finite groups. II | jstor=2007034 | mr=690850 | year=1983b | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=117 | issue=3 | pages=455–551 | doi=10.2307/2007081}}
- {{Citation | last1=Stroth | first1=Gernot | editor1-last=Arasu | editor1-first=K. T. | editor2-last=Dillon | editor2-first=J. F. | editor3-last=Harada | editor3-first=Koichiro | editor4-last=Sehgal | editor4-first=S. | editor5-last=Solomon. | editor5-first=R. | title=Groups, difference sets, and the Monster (Columbus, OH, 1993) | publisher=de Gruyter | location=Berlin | series=Ohio State Univ. Math. Res. Inst. Publ. | isbn=978-3-11-014791-9 | mr=1400413 | year=1996 | volume=4 | chapter=The uniqueness case | pages=117–126}}
1 : Finite groups |