请输入您要查询的百科知识:

 

词条 Volcanic lightning
释义

  1. Charging mechanisms

      Ice charging    Frictional charging    Fractoemission    Radioactive charging  

  2. Other factors affecting volcanic lightning

      Plume height  

  3. Lightning-induced volcanic spherules

  4. References

{{Infobox weather type
|name= Volcanic lightning
|image=Rinjani 1994.jpg
|caption=Volcanic lightning above an eruption of Mount Rinjani
|sign=Associated with volcanic eruptions
|type=Thunderstorm
|cloud=Ash
|effect=Lightning
}}Volcanic lightning is an electrical discharge caused by a volcanic eruption, rather than from an ordinary thunderstorm. Volcanic lightning arises from colliding, fragmenting particles of volcanic ash (and sometimes ice),[1][2] which generate static electricity within the volcanic plume.[3] Volcanic eruptions have been referred to as dirty thunderstorms[4][5] due to moist convection and ice formation that drive the eruption plume dynamics[6][7] and can trigger volcanic lightning.[8][9] But unlike ordinary thunderstorms, volcanic lightning can also occur before any ice crystals have formed in the ash cloud.[10][11]

The earliest recorded observations of volcanic lightning[12] are from Pliny the Younger, describing the eruption of Mount Vesuvius in 79 AD, “There was a most intense darkness rendered more appalling by the fitful gleam of torches at intervals obscured by the transient blaze of lightning.”[13] The first studies of volcanic lightning were also conducted at Mount Vesuvius by Professor Palmieri who observed the eruptions of 1858, 1861, 1868, and 1872 from the Vesuvius Observatory. These eruptions often included lightning activity.[13]

A famous image of the phenomenon was photographed by Carlos Gutierrez and occurred in Chile above the Chaiten Volcano.[14] It circulated widely on the internet. Another notable image of this phenomenon is "The Power of Nature",[15] taken by Mexican photographer Sergio Tapiro[16] in Colima, Mexico, which won third place (Nature category) in the 2016 World Press Photo Contest.[17] Other instances have been reported above Alaska's Mount Augustine volcano,[18] Iceland's Eyjafjallajökull volcano[19] and Mount Etna in Sicily, Italy.[20]

Charging mechanisms

Ice charging

Also known as the "dirty thunderstorm" mechanism of volcanic plume electrification,[5][12] ice charging is thought to play an important role in certain types of eruption plumes – particularly those rising above the freezing level or involving magma-water interaction.[21] Ordinary thunderstorms produce lightning through ice charging[22] as water clouds become electrified from colliding ice crystals and other hydrometeors.[23] Volcanic plumes can also carry abundant water.[24] This water is sourced from the magma,[25] vaporized from surrounding sources such as lakes and glaciers,[26] and entrained from ambient air as the plume rises through the atmosphere.[6] One study suggested that the water content of volcanic plumes can be greater than that of thunderstorms.[27] The water is initially transported as a hot vapor, which condenses to liquid in the rising column and ultimately freezes to ice if the plume cools well below freezing.[28] Some eruptions even produce volcanic hail.[7][29] Support for the ice-charging hypothesis includes the observation that lightning activity greatly increases once volcanic plumes rise above the freezing level,[30][21] and evidence that ice crystals in the anvil top of the volcanic cloud are effective charge-carriers.[9]

Frictional charging

Triboelectric (frictional) charging within the plume of a volcano during eruption is thought to be a major electrical charging mechanism. Electrical charges are generated when rock fragments, ash, and ice particles in a volcanic plume collide and produce static charges, similar to the way that ice particles collide in regular thunderstorms.[12] The convective activity causing the plume to rise then separates the different charge regions, ultimately causing electrical breakdown.

Fractoemission

Fractoemission is the generation of charge through break-up of rock particles. It may be a significant source of charge near the erupting vent.[31]

Radioactive charging

Although it is thought to have a small effect on the overall charging of volcanic plumes, naturally occurring radioisotopes within ejected rock particles may nevertheless influence particle charging.[32] In a study performed on ash particles from the Eyjafjallajökull and Grímsvötn eruptions, scientists found that both samples possessed a natural radioactivity above the background level, but that radioisotopes were an unlikely source of self-charging in the Eyjafjallajökull plume.[33] However, there was the potential for greater charging near the vent where the particle size is larger.[32] Research continues, and the electrification via radioisotopes, such as radon, may in some instances be significant and at various magnitudes a somewhat common mechansim.[34]

Other factors affecting volcanic lightning

Plume height

The height of the ash plume appears to be linked with the mechanism which generates the lightning. In taller ash plumes (7–12 km) large concentrations of water vapor may contribute to lightning activity, while smaller ash plumes (1–4 km) appear to gain more of their electric charge from fragmentation of rocks near the vent of the volcano (fractoemission).[30] The atmospheric temperature also plays a role in the formation of lightning. Colder ambient temperatures promote freezing and ice charging inside the plume, thus leading to more electrical activity.[35][33]

Lightning-induced volcanic spherules

Experimental studies and investigation of volcanic deposits have shown that volcanic lighting creates a by-product known as "lightning-induced volcanic spherules" (LIVS).[36][37] These tiny glass spherules form during high-temperatures processes such as cloud-to-ground lightning strikes, analogous to fulgurites.[36] The temperature of a bolt of lightning can reach 30,000 °C. When this bolt contacts ash particles within the plume it may do one of two things: (1) completely vaporize the ash particles,[38] or (2) cause them to melt and then quickly solidify as they cool, forming orb shapes.[37] The presence of lightning-induced volcanic spherules may provide geological evidence for volcanic lightning when the lightning itself was not observed directly.[36]

References

1. ^{{Cite news|url=https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/04/13/scientists-think-theyve-solved-the-mystery-of-how-volcanic-lightning-forms/?utm_term=.80462ad8051d|title=Scientists think they've solved the mystery of how volcanic lightning forms|last=Fritz|first=Angela|date=2016|work=The Washington Post|access-date=}}
2. ^{{Cite news|url=https://www.seeker.com/mystery-of-volcano-lightning-explained-1771209774.html|title=Mystery of Volcano Lightning Explained|last=Mulvaney|first=Kieran|date=2016|work=Seeker|access-date=}}
3. ^{{Cite news|url=https://blogs.agu.org/geospace/2016/04/12/new-studies-uncover-mysterious-processes-generate-volcanic-lightning/|title=New studies uncover mysterious processes that generate volcanic lightning|last=Lipuma|first=Lauren|date=2016|work=American Geophysical Union GeoSpace Blog|access-date=}}
4. ^{{Cite journal|last=Hoblitt|first=Richard P.|date=2000|title=Was the 18 May 1980 lateral blast at Mt St Helens the product of two explosions? |journal=Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences|volume=358|issue=1770|pages=1639–1661|doi=10.1098/rsta.2000.0608 |doi-access=free}}
5. ^{{Cite journal|last=Bennett|first=A J|last2=Odams|first2=P|last3=Edwards|first3=D|last4=Arason|first4=Þ|date=2010-10-01|title=Monitoring of lightning from the April–May 2010 Eyjafjallajökull volcanic eruption using a very low frequency lightning location network |journal=Environmental Research Letters|volume=5|issue=4|pages=044013|doi=10.1088/1748-9326/5/4/044013 |doi-access=free |issn=1748-9326}}
6. ^{{Cite journal|last=Woods|first=Andrew W.|date=1993|title=Moist convection and the injection of volcanic ash into the atmosphere |journal=Journal of Geophysical Research: Solid Earth|volume=98|pages=17627–17636|doi=10.1029/93JB00718|via=}}
7. ^{{Cite journal|last=Van Eaton|first=Alexa R.|last2=Mastin|first2=Larry G.|last3=Herzog|first3=Michael|last4=Schwaiger|first4=Hans F.|last5=Schneider|first5=David J.|last6=Wallace|first6=Kristi L.|last7=Clarke|first7=Amanda B.|date=2015-08-03|title=Hail formation triggers rapid ash aggregation in volcanic plumes |journal=Nature Communications|volume=6|issue=1|doi=10.1038/ncomms8860 |doi-access=free |issn=2041-1723}}
8. ^{{Cite journal|last=Williams|first=Earl R.|last2=McNutt|first2=Stephen R.|date=2005|title=Total water contents in volcanic eruption clouds and implications for electrification and lightning|url=http://www.giseis.alaska.edu/Input/steve/PUBS/williams-mcn-signpost.PDF|journal=Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety|volume=|pages=67–71|via=}}
9. ^{{Cite journal|last=Van Eaton|first=Alexa R.|last2=Amigo|first2=Álvaro|last3=Bertin|first3=Daniel|last4=Mastin|first4=Larry G.|last5=Giacosa|first5=Raúl E.|last6=González|first6=Jerónimo|last7=Valderrama|first7=Oscar|last8=Fontijn|first8=Karen|last9=Behnke|first9=Sonja A.|date=2016-04-12|title=Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile |journal=Geophysical Research Letters|volume=43|issue=7|pages=3563–3571|doi=10.1002/2016gl068076 |doi-access=free |issn=0094-8276|via=}}
10. ^{{Cite journal|last=Cimarelli|first=C.|last2=Alatorre-Ibargüengoitia|first2=M.A.|last3=Kueppers|first3=U.|last4=Scheu|first4=B.|last5=Dingwell|first5=D.B.|date=2014|title=Experimental generation of volcanic lightning |journal=Geology|volume=42|issue=1|pages=79–82|doi=10.1130/g34802.1 |doi-access=free |issn=1943-2682}}
11. ^{{Cite journal|last=Cimarelli|first=C.|last2=Alatorre-Ibargüengoitia|first2=M. A.|last3=Aizawa|first3=K.|last4=Yokoo|first4=A.|last5=Díaz-Marina|first5=A.|last6=Iguchi|first6=M.|last7=Dingwell|first7=D. B.|date=2016-05-06|title=Multiparametric observation of volcanic lightning: Sakurajima Volcano, Japan |journal=Geophysical Research Letters|volume=43|issue=9|pages=4221–4228|doi=10.1002/2015gl067445 |doi-access=free |issn=0094-8276}}
12. ^{{cite journal|last=Mather|first=T. A.|last2=Harrison|first2=R. G.|date=July 2006|title=Electrification of volcanic plumes|journal=Surveys in Geophysics|volume=27|issue=4|pages=387–432|doi=10.1007/s10712-006-9007-2|issn=0169-3298}}
13. ^{{cite web|url=http://volcano.oregonstate.edu/history-volcanic-lightning|title=History of Volcanic Lightning {{!}} Volcano World {{!}} Oregon State University|website=volcano.oregonstate.edu|access-date=2018-05-09}}
14. ^{{cite web|url=http://news.nationalgeographic.com/news/2008/05/photogalleries/volcano-photos/|title=Chile Volcano Erupts with Ash and Lightning|date=May 6, 2008|publisher=National Geographic|accessdate=2009-01-09|archive-url=https://web.archive.org/web/20090106184308/http://news.nationalgeographic.com/news/2008/05/photogalleries/volcano-photos/|archive-date=2009-01-06|dead-url=yes}}
15. ^{{cite news|url=https://www.worldpressphoto.org/collection/photo/2016/nature/sergio-tapiro|title=The Power of Nature|newspaper=World Press Photo|access-date=2017-01-19}}
16. ^{{cite web|url=https://about.me/tapiro|title=Sergio Tapiro Velasco on about.me|last=Velasco|first=Sergio Tapiro|website=about.me|access-date=2017-01-19}}
17. ^{{cite web|url=https://www.theguardian.com/media/gallery/2016/feb/18/world-press-photo-2016-winners-in-pictures|title=World Press Photo 2016 winners - in pictures|last=2016|first=World Press Photo|date=2016-02-18|website=the Guardian|access-date=2017-01-19}}
18. ^{{cite web|url=http://news.nationalgeographic.com/news/2007/02/070222-volcano-lightning.html|title=Volcanic Lightning Sparked by "Dirty Thunderstorms"|last=Handwerk|first=Brian|date=February 22, 2007|publisher=National Geographic|accessdate=2009-01-09}}
19. ^{{cite web|url=http://news.nationalgeographic.com/news/2010/04/photogalleries/100419-iceland-volcano-lightning-ash-pictures/|title=Iceland Volcano Pictures: Lightning Adds Flash to Ash|date=April 19, 2010|publisher=National Geographic|accessdate=2010-04-20}}
20. ^{{cite web|title = Sky lights up over Sicily as Mount Etna's Voragine crater erupts|url = https://www.theguardian.com/world/2015/dec/03/sicily-mount-etna-voragine-crater-erupts-lightning|website = the Guardian|accessdate = 2015-12-03|first = Ian Sample Science|last = editor}}
21. ^{{Cite journal|last=Arason|first=Pordur|last2=Bennett|first2=Alec J.|last3=Burgin|first3=Laura E.|date=2011|title=Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajökull |journal=Journal of Geophysical Research|volume=116 |doi=10.1029/2011jb008651 |doi-access=free |issn=0148-0227}}
22. ^{{Cite journal|last=Saunders|first=C.P.R.|date=1993|title=A Review of Thunderstorm Electrification Processes |journal=Journal of Applied Meteorology|volume=32|issue=4|pages=642–65 |doi=10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2 |doi-access=free}}
23. ^{{Cite journal|last=Deierling|first=Wiebke|last2=Petersen|first2=Walter A.|last3=Latham|first3=John|last4=Ellis|first4=Scott|last5=Christian|first5=Hugh J.|date=2008-08-15|title=The relationship between lightning activity and ice fluxes in thunderstorms |journal=Journal of Geophysical Research|volume=113|issue=D15|doi=10.1029/2007jd009700 |doi-access=free |issn=0148-0227}}
24. ^{{cite journal|last=Glaze|first=Lori S.|last2=Baloga|first2=Stephen M.|last3=Wilson|first3=Lionel|date=1997-03-01|title=Transport of atmospheric water vapor by volcanic eruption columns|journal=Journal of Geophysical Research: Atmospheres|volume=102|issue=D5|pages=6099–6108|bibcode=1997JGR...102.6099G|doi=10.1029/96jd03125 |doi-access=free |issn=0148-0227}}
25. ^{{Citation|last=Cashman|first=Katharine V.|title=Magmatic Fragmentation|date=2015 |work=The Encyclopedia of Volcanoes|pages=459–471|publisher=Elsevier|isbn=9780123859389 |doi=10.1016/b978-0-12-385938-9.00025-0 |last2=Scheu|first2=Bettina}}
26. ^{{Citation|last=Houghton|first=Bruce|title=Phreatomagmatic and Related Eruption Styles|date=2015 |work=The Encyclopedia of Volcanoes |pages=537–552|publisher=Elsevier|isbn=9780123859389 |doi=10.1016/B978-0-12-385938-9.00030-4 |last2=White|first2=James D.L.|last3=Van Eaton|first3=Alexa R.}}
27. ^{{Cite journal|last=McNutt|first=Stephen R.|last2=Williams|first2=Earle R.|date=2010-08-05|title=Volcanic lightning: global observations and constraints on source mechanisms|url=https://www.researchgate.net/publication/225173821|journal=Bulletin of Volcanology|volume=72|issue=10|pages=1153–1167|doi=10.1007/s00445-010-0393-4|issn=0258-8900 |via=Research Gate}}
28. ^{{Cite journal|last=Durant|first=A. J.|last2=Shaw|first2=R. A.|last3=Rose|first3=W. I.|last4=Mi|first4=Y.|last5=Ernst|first5=G. G. J.|date=2008-05-15|title=Ice nucleation and overseeding of ice in volcanic clouds |journal=Journal of Geophysical Research|volume=113|issue=D9|doi=10.1029/2007jd009064 |doi-access=free |issn=0148-0227}}
29. ^{{Cite journal|last=Arason|first=Þórdur|last2=Þorláksdóttir|first2=S.B. |display-authors=etal |date=2013|title=Properties of ash-infused hail during the Grímsvötn 2011 eruption and implications for radar detection of volcanic columns|url=http://hergilsey.is/arason/rit/2013/arason_et_al_2013_egu_hagl_e.pdf|journal=Geophysical Research Abstracts|volume=15|pages=EGU2013–EGU4797}}
30. ^{{cite journal|last=McNutt|first=S. R.|date=June 2, 2008|title=Volcanic lightning: global observations and constraints on source mechanisms|url=https://www.researchgate.net/publication/225173821|journal=Bulletin of Volcanology|volume=|pages=|via=Research Gate}}{{clarify|reason=citation date (2008) does not match date at url (December 2010);|date=February 2019}}
31. ^{{cite journal|last=James|first=M. R.|last2=Lane|first2=S. J.|last3=Gilbert|first3=J. S.|date=2000|title=Volcanic plume electrification: Experimental investigation of a fracture-charging mechanism|journal=Journal of Geophysical Research: Solid Earth|volume=105|issue=B7|pages=16641–16649|doi=10.1029/2000JB900068|issn=2156-2202}}
32. ^{{cite web|url=http://www.electrostatics.org/images/ESA_2014_G_Aplin_et_al.pdf|title=Electronic Charging of Volcanic Ash|last=Alpin|first=Karen|display-authors=etal|date=2014|website=Electrostatics.org|access-date=May 8, 2018}}
33. ^{{Citation|last=Aplin|first=K.L.|title=Electrostatics and In Situ Sampling of Volcanic Plumes|date=2016|work=Volcanic Ash|pages=99–113|publisher=Elsevier|isbn=9780081004050|last2=Bennett|first2=A.J.|last3=Harrison|first3=R.G.|last4=Houghton|first4=I.M.P.|doi=10.1016/b978-0-08-100405-0.00010-0}}
34. ^{{cite journal |last = Nicoll |first = Keri |author2 = M. Airey |author3 = C. Cimarelli |author4 = A. Bennett |author5 = G. Harrison |author6 = D. Gaudin |author7 = K. Aplin |author8 = K. L. Koh |author9 = M. Knuever |author10 = G. Marlton |title = First In Situ Observations of Gaseous Volcanic Plume Electrification |journal = Geophys. Res. Lett. |volume = 46 |issue = |pages = |date = 2019 |doi = 10.1029/2019GL082211 }}
35. ^{{cite journal|last=Bennett|first=A. J.|last2=Odams|first2=P.|last3=Edwards|first3=D.|last4=Arason|first4=Þ.|date=2010|title=Monitoring of lightning from the April–May 2010 Eyjafjallajökull volcanic eruption using a very low frequency lightning location network|journal=Environmental Research Letters|volume=5|issue=4|pages=044013|doi=10.1088/1748-9326/5/4/044013}}
36. ^{{cite journal|last=Genareau|first=Kimberly|last2=Wardman|first2=John B.|last3=Wilson|first3=Thomas M.|last4=McNutt|first4=Stephen R.|last5=Izbekov|first5=Pavel|date=2015|title=Lightning-induced volcanic spherules|url=https://pubs.geoscienceworld.org/gsa/geology/article/43/4/319/131847/Lightning-induced-volcanic-spherules|journal=Geology|volume=43|issue=4|pages=319–322|doi=10.1130/G36255.1|issn=1943-2682|via=|bibcode=2015Geo....43..319G}}
37. ^{{cite web|url=http://news.sciencemag.org/earth/2015/03/flash-glass-lightning-inside-volcanic-ash-plumes-create-glassy-spherules|title=Flash glass: Lightning inside volcanic ash plumes create glassy spherules|last=Perkins|first=Sid|date=March 4, 2015|publisher=American Association for the Advancement of Science}}
38. ^{{Cite journal|last=Genareau|first=K.|last2=Gharghabi|first2=P.|last3=Gafford|first3=J.|last4=Mazzola|first4=M.|date=2017|title=The Elusive Evidence of Volcanic Lightning|journal=Scientific Reports|volume=7|issue=1|pages=|doi=10.1038/s41598-017-15643-8|pmid=29138444|issn=2045-2322}}
{{commons category|Volcanic lightning}}

3 : Severe weather and convection|Lightning|Electrical phenomena

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 10:04:04