请输入您要查询的百科知识:

 

词条 V speeds
释义

  1. Regulations

  2. Regulatory V-speeds

  3. Other V-speeds

  4. Mach numbers

  5. V1 definitions

  6. References

  7. Further reading

{{Use dmy dates|date=June 2013}}

In aviation, V-speeds are standard terms used to define airspeeds important or useful to the operation of all aircraft.[1] These speeds are derived from data obtained by aircraft designers and manufacturers during flight testing for aircraft type-certification testing. Using them is considered a best practice to maximize aviation safety, aircraft performance or both.[2]

The actual speeds represented by these designators are specific to a particular model of aircraft. They are expressed by the aircraft's indicated airspeed (and not by, for example, the ground speed), so that pilots may use them directly, without having to apply correction factors, as aircraft instruments also show indicated airspeed.

In general aviation aircraft, the most commonly used and most safety-critical airspeeds are displayed as color-coded arcs and lines located on the face of an aircraft's airspeed indicator. The lower ends of the green arc and the white arc are the stalling speed with wing flaps retracted, and stalling speed with wing flaps fully extended, respectively. These are the stalling speeds for the aircraft at its maximum weight.[3][4] The yellow range is the range in which the aircraft may be operated in smooth air, and then only with caution to avoid abrupt control movement, and the red line is the VNE, the never exceed speed.

Proper display of V-speeds is an airworthiness requirement for type-certificated aircraft in most countries.[5][6]

Regulations

The most common V-speeds are often defined by a particular government's aviation regulations. In the United States, these are defined in title 14 of the United States Code of Federal Regulations, known as the Federal Aviation Regulations (FARs).[7] In Canada, the regulatory body, Transport Canada, defines 26 commonly used V-speeds in their Aeronautical Information Manual.[8] V-speed definitions in FAR 23, 25 and equivalent are for designing and certification of airplanes, not for their operational use. The descriptions below are for use by pilots.

Regulatory V-speeds

These V-speeds are defined by regulations. They are typically defined with constraints such as weight, configuration, or phases of flight. Some of these constraints have been omitted to simplify the description.

V-speed designator Description
V1 The speed beyond which takeoff should no longer be aborted. (See V1 definitions below)[7][8][9]
V2 Takeoff safety speed. The speed at which the aircraft may safely be climbed with one engine inoperative.[7][8][9]
V2min Minimum takeoff safety speed.[7][8][9]
V3 Flap retraction speed.[8][9]
V4400|ft|m|abbr=on}}.[10]
VA Design maneuvering speed. This is the speed above which it is unwise to make full application of any single flight control (or "pull to the stops") as it may generate a force greater than the aircraft's structural limitations.[7][8][9][11]
Vat Indicated airspeed at threshold, which is usually equal to the stall speed VS0 multiplied by 1.3 or stall speed VS1g multiplied by 1.23 in the landing configuration at the maximum certificated landing mass, though some manufacturers apply different criteria. If both VS0 and VS1g are available, the higher resulting Vat shall be applied.[12] Also called "approach speed".
VB Design speed for maximum gust intensity.[7][8][9]
VC Design cruise speed, used to show compliance with gust intensity loading.[13]
Vcef See V1; generally used in documentation of military aircraft performance. Denotes "critical engine failure" speed as the speed during takeoff where the same distance would be required to either continue the takeoff or abort to a stop.[14]
VD Design diving speed, the highest speed planned to be achieved in testing.[7][8][9]
VDF Demonstrated flight diving speed, the highest actual speed achieved in testing.[7][8][9]
VEF The speed at which the critical engine is assumed to fail during takeoff.[7]
VF Designed flap speed.[7][8][9]
VFC Maximum speed for stability characteristics.[7][9]
VFE Maximum flap extended speed.[7][8][9]
VFTO Final takeoff speed.[7]
VH Maximum speed in level flight at maximum continuous power.[7][8][9]
VLE Maximum landing gear extended speed. This is the maximum speed at which a retractable gear aircraft should be flown with the landing gear extended.[7][8][9][15]
VLO Maximum landing gear operating speed. This is the maximum speed at which the landing gear on a retractable gear aircraft should be extended or retracted.[7][9][15]
VLOF Lift-off speed.[7][9]
VMC Minimum control speed. The minimum speed at which the aircraft is still controllable with the critical engine inoperative.[7] Like the stall speed, there are several important variables that are used in this determination. Refer to the minimum control speed article for a thorough explanation. VMC is sometimes further refined into more discrete V-speeds e.g. VMCA,VMCG.
VMCA Minimum control speed air. The minimum speed that the aircraft is still controllable with the critical engine inoperative[16] while the aircraft is airborne. VMCA is sometimes simply referred to as VMC.
VMCGMinimum control speed ground. The minimum speed that the aircraft is still controllable with the critical engine inoperative[16] while the aircraft is on the ground.
VMCLMinimum control speed in the landing configuration with one engine inoperative.[9][16]
VMO Maximum operating limit speed.[7][8][9] Exceeding VMO may trigger an overspeed alarm.[17]
VMU Minimum unstick speed.[7][8][9]
VNE Never exceed speed.[7][8][9][18]
VNO Maximum structural cruising speed or maximum speed for normal operations.[7][8][9]
VO Maximum operating maneuvering speed.[19]
VR Rotation speed. The speed at which the pilot begins to apply control inputs to cause the aircraft nose to pitch up, after which it will leave the ground.
Vrot Used instead of VR (in discussions of the takeoff performance of military aircraft) to denote rotation speed in conjunction with the term Vref (refusal speed).[14]
VRef Landing reference speed or threshold crossing speed.[7][8][9]

(In discussions of the takeoff performance of military aircraft, the term Vref stands for refusal speed. Refusal speed is the maximum speed during takeoff from which the air vehicle can stop within the available remaining runway length for a specified altitude, weight, and configuration.[14]) Incorrectly, or as an abbreviation, some documentation refers to Vref and/or Vrot speeds as "Vr."[20]

VS Stall speed or minimum steady flight speed for which the aircraft is still controllable.[7][8][9]
VS0 Stall speed or minimum flight speed in landing configuration.[7][8][9]
VS1 Stall speed or minimum steady flight speed for which the aircraft is still controllable in a specific configuration.[7][8]
VSR Reference stall speed.[7]
VSR0 Reference stall speed in landing configuration.[7]
VSR1 Reference stall speed in a specific configuration.[7]
VSW Speed at which the stall warning will occur.[7]
VTOSS Category A rotorcraft takeoff safety speed.[7][18]
VX Speed that will allow for best angle of climb.[7][8]
VY Speed that will allow for the best rate of climb.[7][8]

Other V-speeds

Some of these V-speeds are specific to particular types of aircraft and are not defined by regulations.

V-speed designator Description
VBE Best endurance speed – the speed that gives the greatest airborne time for fuel consumed.
VBG Best power-off glide speed – the speed that provides maximum lift-to-drag ratio and thus the greatest gliding distance available.
VBR Best range speed – the speed that gives the greatest range for fuel consumed – often identical to Vmd.[21]
VFS Final segment of a departure with one powerplant failed.[22]
VimdMinimum drag[23]
VimpMinimum power[23]
VLLO Maximum landing light operating speed – for aircraft with retractable landing lights.[9]
VmbeMaximum brake energy speed[23][24]
VmdMinimum drag (per lift) – often identical to VBR.[21][24] (alternatively same as Vimd[25])
VminMinimum speed for instrument flight (IFR) for helicopters[18]
VmpMinimum power[24]
VmsMinimum sink speed at median wing loading - the speed at which the minimum descent rate is obtained. In modern gliders, Vms and Vmc have evolved to the same value.[26]
VpAquaplaning speed[27]
VPDMaximum speed at which whole-aircraft parachute deployment has been demonstrated[28]
VraRough air speed (turbulence penetration speed).[9]
VSLStall speed in a specific configuration[9][24]
Vs1gStall speed at 1g load factor
VsseSafe single-engine speed[29]
VtThreshold speed[24]
VTDTouchdown speed[30]
VTGTTarget speed
VTO Take-off speed. (see also VLOF)[31]
VtocsTake-off climbout speed (helicopters)[18]
VtosMinimum speed for a positive rate of climb with one engine inoperative[24]
VtmaxMax threshold speed[24][32]
VwoMaximum window or canopy open operating speed[33]
VXSEBest angle of climb speed with a single operating engine in a light, twin-engine aircraft – the speed that provides the most altitude gain per unit of horizontal distance following an engine failure, while maintaining a small bank angle that should be presented with the engine-out climb performance data.[29]
VYSEBest rate of climb speed with a single operating engine in a light, twin-engine aircraft – the speed that provides the most altitude gain per unit of time following an engine failure, while maintaining a small bank angle that should be presented with the engine-out climb performance data.[15][29]
VZRCZero rate of climb speed in a twin-engine aircraft[24]

Mach numbers

Whenever a limiting speed is expressed by a Mach number, it is expressed relative to the speed of sound, e.g. VMO: Maximum operating speed, MMO: Maximum operating Mach number.[7][8]

V1 definitions

V1 is the critical engine failure recognition speed or takeoff decision speed. It is the speed above which the takeoff will continue even if an engine fails or another problem occurs, such as a blown tire.[9] The speed will vary among aircraft types and varies according to factors such as aircraft weight, runway length, wing flap setting, engine thrust used and runway surface contamination, thus it must be determined by the pilot before takeoff. Aborting a takeoff after V1 is strongly discouraged because the aircraft will by definition not be able to stop before the end of the runway, thus suffering a "runway overrun".[34]

V1 is defined differently in different jurisdictions:

  • The US Federal Aviation Administration defines it as: "the maximum speed in the takeoff at which the pilot must take the first action (e.g., apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within the accelerate-stop distance. V1 also means the minimum speed in the takeoff, following a failure of the critical engine at VEF, at which the pilot can continue the takeoff and achieve the required height above the takeoff surface within the takeoff distance."[7]
  • Transport Canada defines it as: "Critical engine failure recognition speed" and adds: "This definition is not restrictive. An operator may adopt any other definition outlined in the aircraft flight manual (AFM) of TC type-approved aircraft as long as such definition does not compromise operational safety of the aircraft."[8]

References

1. ^{{cite book |last=Love |first=Michael C. |title=Better Takeoffs & Landings |url=https://books.google.com/books?id=p9XT6aHBrGAC&pg=PA13&dq=definition+of+v-speed |accessdate=2008-05-07 |year=2005 |publisher=Mc-Graw Hill |isbn=0-07-038805-9 |pages=13–15 |chapter=2}}
2. ^{{cite book |last=Craig |first=Paul A. |title=Multiengine Flying|url=https://books.google.com/books?id=Tu0zmyyCkwwC&pg=PA3&dq=aviation+%2B+v-speed |accessdate=2008-05-07 |edition=3rd |year=2004 |publisher=McGraw Hill |isbn=0-07-142139-4 |pages=3–6 |chapter=1}}
3. ^{{cite web|url = http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=9b06546343b9c534cd8cbe093366e8a1&rgn=div8&view=text&node=14:1.0.1.3.10.7.105.16&idno=14|title = Title 14: Aeronautics and Space PART 23—AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Subpart G—Operating Limitations and Information Markings And Placards, Part 23, §23.1545|accessdate = 2008-08-01|last = Federal Aviation Administration|authorlink = |date = July 2008|archive-url = https://web.archive.org/web/20060929161342/http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=4f889c54de122f84f222f4139ad72995&rgn=div8&view=text&node=14:1.0.1.3.10.7.105.16&idno=14|archive-date = 29 September 2006|dead-url = yes|df = dmy-all}}
4. ^{{cite web|url=http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf|title=Pilot's Handbook of Aeronautical Knowledge – Chapter 7|format=PDF|publisher=FAA|accessdate=2010-01-29|archive-url=https://web.archive.org/web/20130903044211/http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2007.pdf|archive-date=3 September 2013|dead-url=yes|df=dmy-all}}
5. ^{{cite web|url=http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2008.pdf|title=Pilot's Handbook of Aeronautical Knowledge – Chapter 8|format=PDF|publisher=FAA|accessdate=2010-01-29|deadurl=yes|archiveurl=https://web.archive.org/web/20130903055247/http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2008.pdf|archivedate=3 September 2013|df=dmy-all}}
6. ^{{cite web|url = http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=9b06546343b9c534cd8cbe093366e8a1&rgn=div8&view=text&node=14:1.0.1.3.11.7.200.32&idno=14|title = Title 14: Aeronautics and Space PART 25—AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Subpart G—Operating Limitations and Information Airplane Flight Manual, Part 25, §25.1583|accessdate = 2008-08-01|last = Federal Aviation Administration|authorlink = |date = July 2008|archive-url = https://web.archive.org/web/20060929171930/http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=eded54e7a564dbd6b114da05773f31a0&rgn=div8&view=text&node=14:1.0.1.3.11.7.200.32&idno=14|archive-date = 29 September 2006|dead-url = yes|df = dmy-all}}
7. ^10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 {{cite web|url=http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&SID=f553dbb9c06409a040f3d6865e435c70&rgn=div8&view=text&node=14:1.0.1.1.1.0.1.2&idno=14;cc=ecfr|title=Electronic Code of Federal Regulations – Chapter 14.1|accessdate=2008-05-07|publisher=Federal Aviation Administration}}
8. ^10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 {{cite web|url = http://www.tc.gc.ca/publications/en/tp14371/pdf/hr/tp14371e.pdf#34|title = Aeronautical Information Manual GEN – 1.0 GENERAL INFORMATION |accessdate = 2013-01-01|last = Transport Canada|authorlink = |date=October 2012}}
9. ^10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Peppler, I.L.: From The Ground Up, page 327. Aviation Publishers Co. Limited, Ottawa Ontario, Twenty Seventh Revised Edition, 1996. {{ISBN|0-9690054-9-0}}
10. ^{{cite book|title=CAP 698: Civil Aviation Authority JAR-FCL Examinations: Aeroplane Performance Manual|url=http://www.caa.co.uk/docs/33/CAP698.pdf|accessdate=2009-12-09|year=2006|publisher=Civil Aviation Authority (United Kingdom)|isbn=0-11-790653-0|pages=Section 4–MRJT1 Page 3|archive-url=https://web.archive.org/web/20091114115235/http://www.caa.co.uk/docs/33/CAP698.pdf|archive-date=14 November 2009|dead-url=yes|df=dmy-all}}
11. ^FAA Advisory Circular 23-19A Airframe Guide for Certification of Part 23 Airplanes, Section 48 (p.27) Retrieved 2012-01-06
12. ^PANS-OPS, Volume I, Part I, Section 4, Chapter 1, 1.3.3
13. ^FAR Part 23.335
14. ^MIL-STD-3013A
15. ^{{cite book|title=Pilot's Encyclopedia of Aeronautical Knowledge |url=https://books.google.com/books?id=m5V04SXE4zQC&pg=PT333&dq=v+speeds+%2B+Vyse|accessdate=2008-05-12|year=2007|publisher=Federal Aviation Administration|isbn=978-1-60239-034-8|pages=G–16}}
16. ^{{cite web|url = http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=c884df43e59bd72bc094f5e164c7ec8b&rgn=div8&view=text&node=14:1.0.1.3.11.2.156.24&idno=14|title = Title 14: Aeronautics and Space PART 25—AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Subpart B—Flight Controllability and Maneuverability § 25.149 Minimum control speed.|accessdate = 2009-02-16|last = Federal Aviation Administration.|authorlink = |date = February 2009|archive-url = https://web.archive.org/web/20101004170519/http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=f843d8e5eee070d245ba39cd21c739d0&rgn=div8&view=text&node=14:1.0.1.3.11.2.156.24&idno=14|archive-date = 4 October 2010|dead-url = yes|df = dmy-all}}
17. ^{{cite book|last1=Administration|first1=Federal Aviation|title=Airplane Flying Handbook: FAA-H-8083-3B|date=2017|publisher=Skyhorse Publishing, Inc.|isbn=9781510712843|page=15-9|url=https://books.google.com/books?id=CpTfDQAAQBAJ&pg=PT530&dq=vmo+overspeed&hl=en&sa=X&ved=0ahUKEwjO4a2sndTWAhVUHGMKHVd2BiYQ6AEIKDAA#v=onepage&q=vmo%20overspeed&f=false|accessdate=3 October 2017|language=en}}
18. ^Bell Helicopter Textron: Bell Model 212 Rotorcraft Flight Manual, page II. Bell Helicopters Textron Publishers, Fort Worth, Texas, Revision 3, 1 May 1998. BHT-212IFR-FM-1
19. ^USA 14CFR §23.1557 Retrieved 2012-01-06
20. ^TPUB INTERMEDIATE FLIGHT PREPARATION WORKBOOK APPENDIX A
21. ^{{cite web|url = http://www.auf.asn.au/groundschool/umodule2.html#vspeed |title = Flight Theory: Airspeed and the properties of air |website = FlySafe.raa.asn.au |archiveurl = https://web.archive.org/web/20081101165006/http://www.auf.asn.au/groundschool/umodule2.html#vbr |archivedate = 1 November 2008 |last = Brandon|first = John |date=October 2008}}
22. ^{{cite web|url = http://www.airplanedriver.net/study/part25.htm |title = Cessna Citation |accessdate = 2009-02-14|last = airplanedriver.net |authorlink = |year = n.d.}}
23. ^{{cite book|url = https://books.google.com/books?id=aGL035btsg4C&pg=PA8&lpg=PA8&source=bl&ots=7LRaUDGgTH&sig=TM2RCG30U2073SPv34NPc-cMz28&hl=en&sa=X&oi=book_result&resnum=1&ct=result#PPA7,M1 |title = Ace the Technical Pilot Interview|accessdate = 2009-01-20|last = Bristow |first = Gary |authorlink = |year = n.d.}}
24. ^{{cite book|url = https://books.google.com/books?id=wfiGiY2ixTkC&pg=RA3-PR26&lpg=RA3-PR26&dq=Vt+Threshold+speed&source=web&ots=oDCuGGclc2&sig=WQmpyFI7vuco10mLlFtGQsMzB6U&hl=en&sa=X&oi=book_result&resnum=6&ct=result#PRA3-PR25,M1|title = Canadian Professional Pilot Studies|accessdate = 2009-01-20|last = Croucher |first = Phil |authorlink = |year = 2007}}
25. ^{{cite web|url = http://www.tsb.gc.ca/eng/rapports-reports/aviation/2005/a05w0109/a05w0109.asp|title = Transportation Safety Board of Canada – A05W0109|accessdate = 2010-03-26}}
26. ^{{cite web|url = https://www.willswing.com/key-to-hang-glider-specifications/|title = Wills Wing Hang Glider Mfg.|accessdate = 2016-05-31}}
27. ^{{cite book|url = https://books.google.com/books?id=wfiGiY2ixTkC&pg=RA3-PR20&lpg=RA3-PR20&dq=Vp+aquaplaning&source=web&ots=oDCuGGcih2&sig=8q7P1qdTYaW8qxwcqsu94DsKyG4&hl=en&sa=X&oi=book_result&resnum=6&ct=result|title = Canadian Professional Pilot Studies|accessdate = 2009-01-20|last = Croucher |first = Phil |authorlink = |year = 2007}}
28. ^{{Cite journal| title = SR20 Pilot's Operating Handbook| publisher = Cirrus Design| year = 2004| page = 8| postscript =. }}
29. ^{{cite web|url = http://www.flightsimaviation.com/rule-of-thumb/27_VSpeeds_Abbreviations_List.html|title = Aviation Rules of Thumb – V-Speeds Abbreviations List|accessdate = 2009-01-19|last = Flight Sim Aviation|authorlink = |year = 2009}}
30. ^E.G. Tulapurkara, Chapter 10 Performance analysis VI – Take-off and landing, retrieved 18 November 2015
31. ^{{Cite web|url=https://www.elitetest.com/sites/default/files/downloads/c130h_pretold_card_v1_0.pdf|title=C-130 Takeoff and Landing Data Card|publisher=Elite Electronic Engineering, Inc.|archive-url=https://web.archive.org/web/20180819014933/https://www.elitetest.com/sites/default/files/downloads/c130h_pretold_card_v1_0.pdf|archive-date=19 August 2018|dead-url=no|access-date=18 August 2018}}
32. ^{{cite web|url = http://acronyms.thefreedictionary.com/Maximum+Threshold+Speed+(aviation)|title = VTMAX |accessdate = 2009-01-19|last = TheFreeDictionary |authorlink = |year = 2009}}
33. ^{{cite web|url = http://www.blueridgeairworks.com/specs.htm|title = Cessna 152 – 4843H General Info|accessdate = 2009-02-13|last = Blue Ridge Air Works|authorlink = |year = n.d.|archive-url = https://web.archive.org/web/20080705202030/http://www.blueridgeairworks.com/specs.htm|archive-date = 5 July 2008|dead-url = yes|df = dmy-all}}
34. ^{{cite web|title=Takeoff Safety Training Aid|url=http://www.iata.org/iata/RERR-toolkit/assets/Content/Contributing%20Reports/Reference/TakeoffTrainingSafetyAid.pdf|publisher=Federal Aviation Administration|pages=3|quote=" V1. [...](1) The maximum speed by which a rejected takeoff must be initiated to assure that a safe stop can be completed within the remaining runway, or runway and stopway;"}}

Further reading

  • {{cite book |title= Getting to grips with aircraft performance |publisher= Airbus Customer Services |work= Flight Operations Support & Line Assistance |date= January 2002 |url= http://www.skybrary.aero/bookshelf/books/2263.pdf}}
{{Flight instruments}}

1 : Airspeed

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/27 12:19:12