请输入您要查询的百科知识:

 

词条 National Security Space Launch
释义

  1. History

      Development    Service    Human-rating  

  2. Design

      Atlas V    Delta IV    Falcon 9    OMEGA  

  3. See also

  4. References

  5. External links

National Security Space Launch (NSSL), previously Evolved Expendable Launch Vehicle (EELV), is a launch system program of the United States Air Force (USAF) intended to assure access to space for Department of Defense and other United States government payloads. The program, which began in the 1990s with the goal of making government space launches more affordable and reliable, resulted in the development of the Delta IV and Atlas V. Along with the newer Falcon 9, these launch systems are the primary methods for launching U.S. military satellites.[1][2]

The USAF plans to use the NSSL family of launch vehicles until at least 2030. Follow-on technologies are being considered, one of which was the Reusable Booster System,[3] discontinued in 2012.[4]

The program officially changed its name from Evolved Expendable Launch Vehicle to National Security Space Launch on March 1, 2019, to better reflect the changing nature of launch vehicles that includes reusable systems.[5]

History

Development

The U.S. Air Force assembled its initial blue print for what was then the EELV program in 1994, following many years of government-funded studies into an improved system and architecture, which was intended to replace "legacy" platforms including Delta II, Atlas II/Centaur, and Titan IV. The architecture called for the spacelifter to be based on standardized fairings, liquid core vehicles, upper stages, and solid rockets. The Standard Payload Interface bus was also proposed as another way to save money and improve efficiency.

Principal concerns in the ongoing development of Department of Defense (DoD) launch platforms are diminishing budgets and to ensure national access to space.[6] The importance of the United States having assured access to space is laid out by the National Presidential Directive Number 40 which states:

Access to space through U.S. space transportation capabilities is essential to:

  1. place critical United States Government assets and capabilities into space;
  2. augment space-based capabilities in a timely manner in the event of increased operational needs or minimize disruptions due to on-orbit satellite failures, launch failures, or deliberate actions against U.S. space assets;
  3. support government and commercial human space flight.

The United States, therefore, must maintain robust, responsive, and resilient U.S. space transportation capabilities to assure access to space.[7]

Procurement of EELV boosters for military space launch was to evolve into a "commercial like" nature.[8] The initial bids came from four major defense contractors: Lockheed Martin, Boeing, McDonnell Douglas, and Alliant Techsystems. Each of the bids included a variety of concepts. One of the contractors, Boeing, initially proposed utilizing the Space Shuttle main engines (SSME).[9] When McDonnell Douglas merged with Boeing in 1997, the latter put forth the Delta IV as their EELV proposal. Both the Delta IV and Lockheed Martin's Atlas V eventually entered service.

United Launch Alliance

In 2003, Boeing was found to be in possession of proprietary documents from Lockheed Martin.[10] To end litigation, rather than compete, both companies agreed to form the United Launch Alliance joint venture.[11] Each company has a 50% stake in ULA.[12]

Service

In October 1998 two initial launch services contracts (known as Buy 1) were awarded. Along with the award of two development agreements, the total amount was more than $3 billion.[13] Boeing was awarded a contract for 19 out of the 28 launches; Lockheed Martin was awarded a contract for the other 9. Boeing received $1.38 billion, and Lockheed Martin received $650 million for the launches.[13] In 2003 the USAF moved 7 launches from Delta IV to Atlas V.[14]

In December 2012, the DoD announced a re-opening of the EELV-class launch vehicle market to competition beginning in 2015. "Under the new plan, the Air Force is authorized to proceed with a block buy of "up to" 36 launch cores from current monopoly vendor United Launch Alliance, while at the same time opening up another 14 cores to be purchased competitively. The new era will begin in 2015 with initial launches to be performed in 2017."[15]

The Air Force signed a contract at that time with SpaceX for two launches in 2014 and 2015 to serve as proving flights to support the certification process for the Falcon 9 v1.1 and Falcon Heavy.[16] Following these, in April 2014, SpaceX sued the United States Air Force in order to gain access to the EELV program.[17][18] SpaceX argued the RD-180 engines used by the Atlas V, produced in Russia by the government owned NPO Energomash, violated sanctions against the Russian government.[19] The Air Force and SpaceX settled the lawsuit in Jan 2015 by opening up more launches to competitive bidding.[20][21] The Air Force certified the Falcon 9 in May 2015,[22] and in 2016 SpaceX won a contract under the EELV program to launch a GPS III payload to MEO.[23]

Human-rating

For the launch vehicle for the Orion spacecraft, The Aerospace Corporation was asked by NASA three times, in 2005, 2008 and 2009, to assess technical feasibility and cost of modifying an EELV to be human-rated for use in NASA human spaceflight missions.[24] Two later assessments also addressed the possibility of replacing the Ares I with a Delta IV Heavy. The reports indicate that the Delta IV Heavy meets ISS and lunar target performance requirements.[25] Unlike other modifications of the Delta IV, the Heavy variant does not use solid rocket boosters. In a presentation to the Review of United States Human Space Flight Plans Committee, an Aerospace Corporation representative presented a summary of the study. The summary asserts that even without a newly developed upper stage, it would be feasible for a human-rated Delta IV Heavy to launch a crewed Orion spacecraft to the International Space Station.[26] ULA has since published a paper[27] detailing the changes needed for man-rating EELVs. On February 2, 2010 NASA awarded[28] ULA $6.7 million in stimulus funds under the Commercial Crew Development (CCDev) program. A Space Act Agreement was set up to develop an Emergency Detection System (EDS) that could be used on both EELVs. An EDS monitors critical launch vehicle and spacecraft systems and issues status, warning and abort commands to the crew during their mission to low Earth orbit.

SpaceX works on human-rating the Falcon 9 launch vehicle with the Dragon 2 capsule. A first crewed flight is planned in June 2019.[29]

Boeing works on Boeing CST-100 Starliner, designed to fly with Atlas V, Delta IV, Falcon 9 or the future Vulcan rocket. Initial flights will use an Atlas V variant.[30]

Design

Boeing and Lockheed Martin were both collectively awarded US$100 million for the final phase of the bid. Both companies built their designs around modularization, standardization and minimizing the amount of equipment and using proven, reliable and simplified systems. Boeing developed the Common Booster Core (CBC) that would be the center of the Delta IV. For the Atlas V Lockheed Martin did something similar, calling it a Common Core Booster (CCB).[31]

Atlas V

The Atlas V space launch system has a lineage that began in 1954 under the intercontinental ballistic missile (ICBM) program.[32]. The first US ICBM was the SM-65 Atlas, soon to be developed into a space launch vehicle.[32]

Main features include the Common Core Booster powered by an NPO Energomash RD-180 engine, Aerojet strap-on solid boosters (up to five), and a Centaur upper stage, powered by single or dual Pratt & Whitney Rocketdyne RL10A-4-2 engines. There are options of a 4.2- or 5.4-meter payload fairing (PLF). A three-digit (XYZ) naming convention is used for the Atlas V configuration identification. The first digit represents the payload fairing size (either 4 or 5), the second digit represents the number of solid rocket boosters used (0 through 5), and the third digit represents the number of engines used on the Centaur (1 or 2).

Delta IV

The Delta SLV is a direct descendant of the PGM-17 Thor missile. Originating as a launch vehicle in the 1950s, the Delta program was initiated by NASA.

Main features include the Common Booster Core (CBC) powered by a Pratt and Whitney Rocketdyne RS-68 engine, a Delta Cryogenic Second Stage (DCSS), and off-pad horizontal vehicle integration. The Delta IV M configuration consists of a CBC first stage and a 4 m diameter DCSS.[33] There are three variants of Delta IV M+ configuration. The Delta IV M+(4,2) uses two strap-on solid rocket motors (SRMs) solid rocket booster to augment the first-stage CBC and a 4 m diameter DCSS and PLF. The Delta IV M+(5,2) and Delta IV M+(5,4) have two and four SRMs, respectively and 5 m diameter DCSS and PLF. The Heavy Lift Vehicle (HLV) variant has two strap-on CBC cores with a 5 m DCSS and PLF. The Delta IV-Heavy utilizes the same configuration as the Delta IV-M (no strap on Aerojet boosters) but with two additional Common Booster Cores.

Falcon 9

The Falcon 9 is a clean-sheet rocket designed by SpaceX. Announced in 2005, the Falcon 9 had its first flight in 2010. As of May 2018, it has gone through five major revisions.

All Falcon 9 versions are two-stage, LOX/RP-1-powered launch vehicles.

The Falcon 9 tank walls and domes are made from aluminum–lithium alloy. The tanks are made using friction stir welding, the highest-strength and most reliable welding technique available.[36] The second-stage tank of a Falcon 9 is simply a shorter version of the first-stage tank and uses most of the same tooling, material and manufacturing techniques, reducing production costs.[34] SpaceX uses multiple redundant flight computers in a fault-tolerant design. Each Merlin rocket engine is controlled by three voting computers, each of which has two physical processors that constantly check each other. The software runs on Linux and is written in C++.[38] For flexibility, commercial off-the-shelf parts and system-wide radiation-tolerant design are used instead of rad-hardened parts.[35] Each stage has stage-level flight computers, in addition to the Merlin-specific engine controllers, of the same fault-tolerant triad design to handle stage-control functions.

The first NSSL-class payload launch by this configuration launched on December 23, 2018.[36]

OMEGA

OmegA is a rocket design by Orbital ATK (now Northrop Grumman Innovation Systems), using solid rockets for stage 1, with a maiden flight expected 2021.

See also

  • Reusable Booster System, the program (2010–discontinued 2012) that was intended to follow NSSL after 2025

References

1. ^{{cite news |url=http://www.businessweek.com/news/2009-12-29/boeing-may-lose-271-million-in-rocket-billings-pentagon-says.html |title=Boeing May Lose $271 Million in Rocket Billings, Pentagon Says |work=Bloomberg Businessweek |first=Tony |last=Capaccio |date=December 29, 2009}}
2. ^{{cite news |url=http://www.spaceflightinsider.com/organizations/space-exploration-technologies/spacexs-falcon-9-breaks-eelv-monopoly/ |title=SpaceX's Falcon 9 Breaks EELV Monopoly |work=Spaceflight Insider |date=May 27, 2015 |accessdate=January 15, 2017}}
3. ^{{cite news |url=https://aviationweek.com/awin/reusable-successor-eelv-moving-ahead |title=Reusable Successor To EELV Moving Ahead |work=Aviation Week & Space Technology |first=Guy |last=Norris |date=April 23, 2012 |accessdate=April 24, 2012}}
4. ^{{cite news |url=https://spacenews.com/31716prototype-reusable-rocket-effort-felled-by-us-budget-woes/ |title=Prototype Reusable Rocket Effort Felled by U.S. Budget Woes |work=SpaceNews |first=Warren |last=Ferster |date=October 19, 2012 |accessdate=March 2, 2019}}
5. ^{{cite press release |url=http://www.spaceref.com/news/viewpr.html?pid=53757 |title=Air Force establishes National Security Space Launch program |publisher=U.S. Air Force |agency=SpaceRef |date=March 1, 2019 |accessdate=March 2, 2019}}
6. ^{{cite conference |title=U.S. Expendable Launch Vehicle Performance History |conference=36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. July 24-28, 2000. Las Vegas, Nevada. |first=M. |last=Coleman |date=2000 |doi=10.2514/6.2000-3281 |id=AIAA-2000-3281}}
7. ^{{cite paper |url=https://fas.org/irp/offdocs/nspd/nspd-40.pdf |title=National Security Presidential Directive 40: U.S. Space Transportation Policy |publisher=The White House |date=December 21, 2004}}
8. ^{{cite conference |title=The Transition of Space Launch - Heritage to EELV |conference=AIAA Space 2003 Conference & Exposition. September 23-25, 2003. Long Beach, California. |first=John L. |last=Buzzatto |date=2003 |doi=10.2514/6.2003-6408 |id=AIAA-2003-6408}}
9. ^{{cite news |title=Boeing Banks on SSME For Air Force Contract |work=SpaceNews |page=2 |date=May 1, 1995}}
10. ^{{Cite web |url=http://www.justice.gov/criminal/cybercrime/press-releases/2003/branchCharge.htm |title=Two Former Boeing Managers Charged in Plot to Steal Trade Secrets from Lockheed Martin |publisher=U.S. Department of Justice |date=June 25, 2003 |archive-url=https://archive.is/20121213170442/http://www.justice.gov/criminal/cybercrime/press-releases/2003/branchCharge.htm |archive-date=December 13, 2012 |access-date=October 22, 2016 |deadurl=yes}}
11. ^{{Cite web |url=https://www.spacex.com/news/2014/04/29/eelv-right-compete |title=EELV: The Right to Compete |publisher=SpaceX |last=Shanklin |first=Emily |date=April 29, 2014 |access-date=October 22, 2016}}
12. ^{{cite web |url=http://www.ulalaunch.com/site/pages/About_Overview.shtml |title=About ULA |publisher=ULA}}
13. ^{{cite web |url=http://www.globalsecurity.org/space/systems/eelv.htm |title=EELV Evolved Expendable Launch Vehicle |publisher=GlobalSecurity.org}}
14. ^{{cite news |url=http://spaceflightnow.com/news/n0307/24eelv/ |title=Pentagon strips 7 launches from Boeing Delta 4 rocket |publisher=Spaceflight Now |first=Justin |last=Ray |date=July 24, 2003}}
15. ^{{cite news |url=http://innerspace.net/2012/12/04/eelv-a-pre-mature-split-decision/ |title=EELV Update: A Split Decision and a New Beginning |work=Innerspace |last=Money |first=Stewart |date=December 4, 2012 |accessdate=December 5, 2012}}
16. ^{{cite web |url=https://www.spacex.com/press/2012/12/19/spacex-awarded-two-eelv-class-missions-united-states-air-force |title=SpaceX Awarded Two EELV-Class Missions from the United States Air Force |date=December 5, 2012}}
17. ^{{cite news |url=https://arstechnica.com/tech-policy/2014/04/after-successful-landing-spacex-to-sue-air-force-to-compete-for-launch-contracts/ |title=After successful landing, SpaceX to sue Air Force to compete for launch contracts |work=Ars Technica |last=Silver |first=Joe |date=April 25, 2014 |accessdate=January 15, 2017}}
18. ^{{cite news |url=https://arstechnica.com/tech-policy/2014/07/spacex-wins-intermediate-victory-over-us-in-launch-contract-case/ |title=SpaceX wins intermediate victory over US in launch contract case |work=Ars Technica |last=Farivar |first=Cyrus |date=July 25, 2014 |accessdate=January 15, 2017}}
19. ^{{cite news |url=https://arstechnica.com/science/2014/05/spacex-says-rocket-purchases-violate-russian-sanctions-gets-injunction/ |title=SpaceX says rocket purchases violate Russian sanctions, gets injunction |work=Ars Technica |last=Hutchinson |first=Lee |date=May 1, 2014 |accessdate=January 15, 2017}}
20. ^{{cite news |url=https://arstechnica.com/business/2015/01/spacex-elbows-into-air-force-launch-program-after-dropping-lawsuit/ |title=SpaceX elbows into Air Force launch program after dropping lawsuit |work=Ars Technica |last=Gallagher |first=Sean |date=January 25, 2015 |accessdate=January 15, 2017}}
21. ^{{cite news |url=http://spacenews.com/spacex-air-force-reach-agreement/ |title=SpaceX, Air Force Settle Lawsuit over ULA Blockbuy |work=SpaceNews |first=Mike |last=Gruss |date=January 23, 2015}}
22. ^{{cite news |url=https://spacenews.com/u-s-air-force-certifies-falcon-9-for-military-launches-2/ |title=SpaceX Falcon 9 Certified for Military Launches |work=SpaceNews |first=Mike |last=Gruss |date=May 26, 2015}}
23. ^{{cite news |last=Gruss |first=Mike |title=SpaceX wins $82 million contract for 2018 Falcon 9 launch of GPS 3 satellite |url=http://spacenews.com/spacex-wins-82-million-contract-for-2018-falcon-9-launch-of-gps-3-satellite/ |work=SpaceNews |date=April 27, 2016 |accessdate=April 29, 2016}}
24. ^{{cite news |url=http://www.aviationnewsreleases.com/2009/06/nasa-study-finds-human-rated-delta-iv.html |title=NASA - Study Finds Human-rated Delta IV Cheaper |work=Aviation News Releases |publisher=Aviation Week |first=Frank |last=Morring Jr |date=June 16, 2009}}
25. ^{{cite paper |url=https://www.nasa.gov/pdf/377875main_081109%20Human%20Rated%20Delta%20IV.pdf |title=Human-Rated Delta IV Heavy Study Constellation Architecture Impacts |publisher=NASA/The Aerospace Corporation |first1=David A. |last1=Bearden |first2=John P. |last2=Skratt |first3=Matthew J. |last3=Hart |date=June 1, 2009 |id=TOR-2009(2187)-9151}}
26. ^{{cite paper |url=https://www.nasa.gov/pdf/361836main_09%20-%20EELV%20Considerations%20c%20Aerospace%20HSF.pdf |title=Initial Summary of Human Rated Delta IV Heavy Study: Briefing to the Review of U.S. Human Space Flight Plans Committee |publisher=NASA/The Aerospace Corporation |first=Gary |last=Pulliam |date=June 17, 2009}}
27. ^{{cite conference |url=https://www.ulalaunch.com/docs/default-source/human-rating/human-rating-atlas-v-and-delta-iv.pdf |title=Atlas and Delta Capabilities to Launch Crew to Low Earth Orbit |conference=AIAA SPACE 2009 Conference & Exposition. September 14-17, 2009. Pasadena, California. |first1=Jeff A. |last1=Patton |first2=Jonathon D. |last2=Barr |date=2009 |doi=10.2514/6.2009-6729 |id=AIAA-2009-6729}}
28. ^{{cite press release |url=https://www.ulalaunch.com/about/news-detail/2010/02/02/nasa-selects-united-launch-alliance |title=NASA Selects United Launch Alliance for Commercial Crew Development Program |publisher=United Launch Alliance |date=February 2, 2010}}
29. ^{{cite web |url=https://blogs.nasa.gov/commercialcrew/2018/10/04/nasas-commercial-crew-program-target-test-flight-dates-4/ |title=NASA’s Commercial Crew Program Target Test Flight Dates |publisher=NASA |first=Anna |last=Heiney |date=October 4, 2018 |access-date=December 14, 2018}}
30. ^{{cite tweet |user=barbegan13 |number=787351995078152192 |first=Barbara |last=Egan |title=We are calling the config N22. No payload fairing with the Starliner on board |date=October 15, 2016}}
31. ^{{cite web |url=http://www.afspc.af.mil/library/factsheets/factsheet.asp?id=3643 |title=Evolved Expendable Launch Vehicle |publisher=U.S. Air Force Space Command |date=March 2009 |archiveurl=https://web.archive.org/web/20140427031225/http://www.afspc.af.mil/library/factsheets/factsheet.asp?id=3643 |archivedate=April 27, 2014 |deadurl=yes}}
32. ^{{cite conference |title=Atlas engines - A history |conference=27th Joint Propulsion Conference. June 24-26, 1991. Sacramento, California. |first=H. |last=Minami |date=1991 |doi=10.2514/6.1991-1943 |id=AIAA-91-1943-CP}}
33. ^{{cite news |url=http://www.nasaspaceflight.com/2012/04/live-ula-delta-iv-launch-nrol-25-military-satellite-vafb/ |title=ULA Delta IV launches the NROL-25 military satellite from VAFB |work=NASASpaceFlight.com |first=William |last=Graham |date=April 3, 2012}}
34. ^{{cite web |url=http://www.spacex.com/falcon9.php |title=Falcon 9 Overview (2010) |publisher=SpaceX |access-date=May 8, 2010 |archive-url=https://web.archive.org/web/20101222155322/http://www.spacex.com/falcon9.php |archive-date=December 22, 2010}}
35. ^{{cite web |url=http://www.aviationweek.com/Blogs.aspx?plckBlogId=Blog%3a04ce340e-4b63-4d23-9695-d49ab661f385&plckPostId=Blog%3a04ce340e-4b63-4d23-9695-d49ab661f385Post%3aa8b87703-93f9-4cdf-885f-9429605e14df |title=Dragon's "Radiation-Tolerant" Design |work=Aviation Week |last=Svitak |first=Amy |date=November 18, 2012 |accessdate=November 22, 2012 |archiveurl=https://web.archive.org/web/20131203204735/http://www.aviationweek.com/Blogs.aspx?plckBlogId=Blog%3A04ce340e-4b63-4d23-9695-d49ab661f385&plckPostId=Blog%3A04ce340e-4b63-4d23-9695-d49ab661f385Post%3Aa8b87703-93f9-4cdf-885f-9429605e14df |archivedate=December 3, 2013 |deadurl=yes}}
36. ^{{cite news |url=https://spaceflightnow.com/2018/12/17/air-force-requirements-will-keep-spacex-from-recovering-falcon-9-booster-after-gps-launch/ |title=Air Force requirements will keep SpaceX from landing Falcon 9 booster after GPS launch |work=Spaceflight Now |last=Clark |first=Stephen |date=December 17, 2018 |access-date=December 18, 2018}}

External links

  • United Launch Alliance
    • Atlas website by Lockheed Martin
    • Delta website by Boeing
  • SpaceX
{{Use American English|date=March 2019}}{{Use mdy dates|date=March 2019}}

4 : Air Force Space Command|Expendable space launch systems|Reusable space launch systems|Space launch vehicles of the United States

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 8:07:10