词条 | Weingarten equations |
释义 |
Statement in classical differential geometryLet S be a surface in three-dimensional Euclidean space that is parametrized by position vector r(u, v) of the surface. Let P = P(u, v) be a fixed point on this surface. Then are two tangent vectors at point P. Let n be the unit normal vector and let (E, F, G) and (L, M, N) be the coefficients of the first and second fundamental forms of this surface, respectively. The Weingarten equation gives the first derivative of the unit normal vector n at point P in terms of tangent vectors ru and rv: This can be expressed compactly in index notation as , where Kab are the components of the surface's curvature tensor. Notes1. ^{{cite journal|author=J. Weingarten|journal=Journal für die Reine und Angewandte Mathematik |title=Ueber eine Klasse auf einander abwickelbarer Flächen|volume=59|year=1861|pages=382–393}} References
1 : Differential geometry of surfaces |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。