请输入您要查询的百科知识:

 

词条 Nernst effect
释义

  1. Physical picture

  2. Sample types

  3. See also

  4. Journal articles

{{Thermoelectric effect|cTopic=Principles}}

In physics and chemistry, the Nernst effect (also termed first Nernst–Ettingshausen effect, after Walther Nernst and Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other. An electric field will be induced normal to both.

This effect is quantified by the Nernst coefficient |N|, which is defined to be

where is the y-component of the electric field that results from the magnetic field's z-component and the temperature gradient .

The reverse process is known as the Ettingshausen effect and also as the second Nernst–Ettingshausen effect.

Physical picture

Mobile energy carriers (for example conduction-band electrons in a semiconductor) will move along temperature gradients due to statistics and the relationship

between temperature and kinetic energy. If there is a magnetic field transversal to the temperature gradient and the carriers are electrically charged, they experience a force perpendicular to their direction of motion (also the direction of the temperature gradient) and to the magnetic field. Thus, a perpendicular electric field is induced.

Sample types

Semiconductors exhibit the Nernst effect. This has been studied in the 1950s by Krylova, Mochan and many others. In metals however, it is almost non-existent. It appears in the vortex phase

of type-II superconductors due to vortex motion. This has been studied by Huebener et al. High-temperature superconductors exhibit the Nernst effect both in the superconducting and in the pseudogap phase, as was first found by Xu et al. Heavy-Fermion superconductors can show a strong Nernst signal which is likely not due to the vortices, as was found by Bel et al.

See also

  • Seebeck effect
  • Peltier effect
  • Hall effect
  • Righi–Leduc effect

Journal articles

  • R. P. Huebener and A. Seher, "Nernst Effect and Flux Flow in Superconductors. I. Niobium", [https://dx.doi.org/10.1103/PhysRev.181.701 Web]
  • R. P. Huebener and A. Seher, "Nernst Effect and Flux Flow in Superconductors. II. Lead Films", [https://dx.doi.org/10.1103/PhysRev.181.710 Web]
  • V. A. Rowe and R. P. Huebener, "Nernst Effect and Flux Flow in Superconductors. III. Films of Tin and Indium", [https://dx.doi.org/10.1103/PhysRev.185.666 Web]
  • {{Cite journal |last=Xu |first=Z. A. |last2=Ong |first2=N. P. |last3=Wang |first3=Y. |last4=Kakeshita |first4=T. |last5=Uchida |first5=S. |title=Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4 |journal=Nature |volume=406 |issue=6795 |pages=486–488 |doi=10.1038/35020016 |pmid=10952303 |year=2000 |bibcode = 2000Natur.406..486X }}
  • {{Cite journal |last=Bel |first=R. |last2=Behnia |first2=K. |last3=Nakajima |first3=Y. |last4=Izawa |first4=K. |last5=Matsuda |first5=Y. |last6=Shishido |first6=H. |last7=Settai |first7=R. |last8=Onuki |first8=Y. |title=Giant Nernst Effect in CeCoIn5 |journal=Physical Review Letters |volume=92 |issue=21 |pages=217002 |year=2004 |doi=10.1103/PhysRevLett.92.217002 |pmid=15245310 |bibcode=2004PhRvL..92u7002B|arxiv = cond-mat/0311473 }}
  • {{Cite journal |last=Krylova |first=T. V. |last2=Mochan |first2=I. V. |title= |journal=J. Tech. Phys. (USSR) |volume=25 |issue= |pages=2119 |year=1955 }}
  • Nernst effect on arxiv.org

3 : Walther Nernst|Electrodynamics|Thermoelectricity

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 19:24:46