词条 | Nonlinear autoregressive exogenous model |
释义 |
In time series modeling, a nonlinear autoregressive exogenous model (NARX) is a nonlinear autoregressive model which has exogenous inputs. This means that the model relates the current value of a time series to both:
In addition, the model contains:
which relates to the fact that knowledge of other terms will not enable the current value of the time series to be predicted exactly. Such a model can be stated algebraically as Here y is the variable of interest, and u is the externally determined variable. In this scheme, information about u helps predict y, as do previous values of y itself. Here ε is the error term (sometimes called noise). For example, y may be air temperature at noon, and u may be the day of the year (day-number within year). The function F is some nonlinear function, such as a polynomial. F can be a neural network, a wavelet network, a sigmoid network and so on. To test for non-linearity in a time series, the BDS test (Brock-Dechert-Scheinkman test) developed for econometrics can be used. References
External links
2 : Time series models|Nonlinear time series analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。