请输入您要查询的百科知识:

 

词条 7-simplex honeycomb
释义

  1. A7 lattice

  2. Related polytopes and honeycombs

      Projection by folding  

  3. See also

  4. Notes

  5. References

7-simplex honeycomb
(No image)
TypeUniform 7-honeycomb
FamilySimplectic honeycomb
Schläfli symbol{3[8]}
Coxeter diagramnode_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}}
6-face types{36} , t1{36}
t2{36} , t3{36}
6-face types{35} , t1{35}
t2{35}
5-face types{34} , t1{34}
t2{34}
4-face types{33} , t1{33}
Cell types{3,3} , t1{3,3}
Face types{3}
Vertex figuret0,6{36}
Symmetry×21, <[3[8]]>
Propertiesvertex-transitive

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

A7 lattice

This vertex arrangement is called the A7 lattice or 7-simplex lattice. The 56 vertices of the expanded 7-simplex vertex figure represent the 56 roots of the Coxeter group.[1] It is the 7-dimensional case of a simplectic honeycomb. Around each vertex figure are 254 facets: 8+8 7-simplex, 28+28 rectified 7-simplex, 56+56 birectified 7-simplex, 70 trirectified 7-simplex, with the count distribution from the 9th row of Pascal's triangle.

contains as a subgroup of index 144.[2] Both and can be seen as affine extensions from from different nodes:

The A{{sup sub|2|7}} lattice can be constructed as the union of two A7 lattices, and is identical to the E7 lattice.

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}}.

The A{{sup sub|4|7}} lattice is the union of four A7 lattices, which is identical to the E7* lattice (or E{{sup sub|2|7}}).

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}} + {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_01l}} = dual of {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}.

The A{{sup sub|*|7}} lattice (also called A{{sup sub|8|7}}) is the union of eight A7 lattices, and has the vertex arrangement to the dual honeycomb of the omnitruncated 7-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 7-simplex.

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪{{CDD|node|split1|nodes_10lur|3ab|nodes|3ab|nodes|split2|node}} ∪{{CDD|node|split1|nodes_01lr|3ab|nodes|3ab|nodes|split2|node}} ∪{{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪{{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_10lru|split2|node}} ∪{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_01lr|split2|node}} ∪{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = dual of {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|nodes_11|split2|node_1}}.

Related polytopes and honeycombs

{{7-simplex honeycomb family}}

Projection by folding

The 7-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}}
node_1|4|node|3|node|3|node|4|node}}

See also

Regular and uniform honeycombs in 7-space:

  • 7-cubic honeycomb
  • 7-demicubic honeycomb
  • Truncated 7-simplex honeycomb
  • Omnitruncated 7-simplex honeycomb
  • E7 honeycomb

Notes

1. ^http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A7.html
2. ^N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley–Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
{{Honeycombs}}

2 : Honeycombs (geometry)|8-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 18:43:35