词条 | Optical coherence tomography | |||
释义 |
Name = Optical coherence tomography | Image = Nibib 030207 105309 sarcoma.jpg | Caption = Optical Coherence Tomography (OCT) image of a sarcoma | ICD10 = |hb ICD9 = | MeshID = D041623 | OPS301 = {{OPS301|3-300}} | OtherCodes = | }} Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue). It is used for medical imaging and industrial nondestructive testing (NDT). Optical coherence tomography is based on low-coherence interferometry, typically employing near-infrared light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Confocal microscopy, another optical technique, typically penetrates less deeply into the sample but with higher resolution. Depending on the properties of the light source (superluminescent diodes, ultrashort pulsed lasers, and supercontinuum lasers have been employed), optical coherence tomography has achieved sub-micrometer resolution (with very wide-spectrum sources emitting over a ~100 nm wavelength range).{{citation needed|date=June 2015}}{{verification needed|reason=confocal microscopy typically has a resolution of about 1 um and it is stated earlier that confocal microscopy has better resolution than OCT, so need to substantiate this claim|date=June 2015}} Optical coherence tomography is one of a class of optical tomographic techniques.{{citation needed|date=March 2019}} Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology and optometry where it can be used to obtain detailed images from within the retina.{{citation needed|date=March 2019}} Recently, it has also begun to be used in interventional cardiology to help diagnose coronary artery disease,[1] and in dermatology to improve diagnosis.[2] A relatively recent implementation of optical coherence tomography, frequency-domain optical coherence tomography, provides advantages in the signal-to-noise ratio provided, thus permitting faster signal acquisition.{{citation needed|date=March 2019}} IntroductionStarting from white-light interferometry for in vivo ocular eye measurements[3][4] imaging of biological tissue, especially of the human eye, was investigated by multiple groups worldwide. A first two-dimensional in vivo depiction of a human eye fundus along a horizontal meridian based on white light interferometric depth scans was presented at the ICO-15 SAT conference in 1990.[4] Further developed in 1990 by Naohiro Tanno,[5][6] then a professor at Yamagata University, and in particular since 1991 by Huang et al., in Prof. James Fujimoto laboratory at Massachusetts Institute of Technology,[7] optical coherence tomography (OCT) with micrometer resolution and cross-sectional imaging capabilities has become a prominent biomedical tissue-imaging technique; it is particularly suited to ophthalmic applications and other tissue imaging requiring micrometer resolution and millimeter penetration depth.[8] First in vivo OCT images – displaying retinal structures – were published in 1993 and first endoscopic images in 1997.[9][10] OCT has also been used for various art conservation projects, where it is used to analyze different layers in a painting. OCT has interesting advantages over other medical imaging systems. Medical ultrasonography, magnetic resonance imaging (MRI), confocal microscopy, and OCT are differently suited to morphological tissue imaging: while the first two have whole body but low resolution imaging capability (typically a fraction of a millimeter), the third one can provide images with resolutions well below 1 micrometer (i.e. sub-cellular), between 0 and 100 micrometers in depth, and the fourth can probe as deep as 500 micrometers, but with a lower (i.e. architectural) resolution (around 10 micrometers in lateral and a few micrometers in depth in ophthalmology, for instance, and 20 micrometers in lateral in endoscopy).[11][12]OCT is based on low-coherence interferometry.[13][14]{{Page needed |date=October 2016}}[15] In conventional interferometry with long coherence length (i.e., laser interferometry), interference of light occurs over a distance of meters. In OCT, this interference is shortened to a distance of micrometers, owing to the use of broad-bandwidth light sources (i.e., sources that emit light over a broad range of frequencies). Light with broad bandwidths can be generated by using superluminescent diodes or lasers with extremely short pulses (femtosecond lasers). White light is an example of a broadband source with lower power. Light in an OCT system is broken into two arms—a sample arm (containing the item of interest) and a reference arm (usually a mirror). The combination of reflected light from the sample arm and reference light from the reference arm gives rise to an interference pattern, but only if light from both arms have traveled the "same" optical distance ("same" meaning a difference of less than a coherence length). By scanning the mirror in the reference arm, a reflectivity profile of the sample can be obtained (this is time domain OCT). Areas of the sample that reflect back a lot of light will create greater interference than areas that don't. Any light that is outside the short coherence length will not interfere.[16] This reflectivity profile, called an A-scan, contains information about the spatial dimensions and location of structures within the item of interest. A cross-sectional tomograph (B-scan) may be achieved by laterally combining a series of these axial depth scans (A-scan). A face imaging at an acquired depth is possible depending on the imaging engine used. Layperson's explanation{{refimprove section|date=March 2019}}Optical Coherence Tomography, or ‘OCT’, is a technique for obtaining sub-surface images of translucent or opaque materials at a resolution equivalent to a low-power microscope. It is effectively ‘optical ultrasound’, imaging reflections from within tissue to provide cross-sectional images.[17] OCT has attracted interest among the medical community because it provides tissue morphology imagery at much higher resolution (better than 10 µm) than other imaging modalities such as MRI or ultrasound. The key benefits of OCT are:
OCT delivers high resolution because it is based on light, rather than sound or radio frequency. An optical beam is directed at the tissue, and a small portion of this light that reflects from sub-surface features is collected. Note that most light is not reflected but, rather, scatters off at large angles. In conventional imaging, this diffusely scattered light contributes background that obscures an image. However, in OCT, a technique called interferometry is used to record the optical path length of received photons allowing rejection of most photons that scatter multiple times before detection. Thus OCT can build up clear 3D images of thick samples by rejecting background signal while collecting light directly reflected from surfaces of interest. Within the range of noninvasive three-dimensional imaging techniques that have been introduced to the medical research community, OCT as an echo technique is similar to ultrasound imaging. Other medical imaging techniques such as computerized axial tomography, magnetic resonance imaging, or positron emission tomography do not use the echo-location principle.[18] The technique is limited to imaging 1 to 2 mm below the surface in biological tissue, because at greater depths the proportion of light that escapes without scattering is too small to be detected. No special preparation of a biological specimen is required, and images can be obtained ‘non-contact’ or through a transparent window or membrane. It is also important to note that the laser output from the instruments is low – eye-safe near-infrared light is used – and no damage to the sample is therefore likely. TheoryThe principle of OCT is white light, or low coherence, interferometry. The optical setup typically consists of an interferometer (Fig. 1, typically Michelson type) with a low coherence, broad bandwidth light source. Light is split into and recombined from reference and sample arm, respectively. Time domainIn time domain OCT the pathlength of the reference arm is varied in time (the reference mirror is translated longitudinally). A property of low coherence interferometry is that interference, i.e. the series of dark and bright fringes, is only achieved when the path difference lies within the coherence length of the light source. This interference is called auto correlation in a symmetric interferometer (both arms have the same reflectivity), or cross-correlation in the common case. The envelope of this modulation changes as pathlength difference is varied, where the peak of the envelope corresponds to pathlength matching. The interference of two partially coherent light beams can be expressed in terms of the source intensity, , as where represents the interferometer beam splitting ratio, and is called the complex degree of coherence, i.e. the interference envelope and carrier dependent on reference arm scan or time delay , and whose recovery is of interest in OCT. Due to the coherence gating effect of OCT the complex degree of coherence is represented as a Gaussian function expressed as[15] where represents the spectral width of the source in the optical frequency domain, and is the centre optical frequency of the source. In equation (2), the Gaussian envelope is amplitude modulated by an optical carrier. The peak of this envelope represents the location of the microstructure of the sample under test, with an amplitude dependent on the reflectivity of the surface. The optical carrier is due to the Doppler effect resulting from scanning one arm of the interferometer, and the frequency of this modulation is controlled by the speed of scanning. Therefore, translating one arm of the interferometer has two functions; depth scanning and a Doppler-shifted optical carrier are accomplished by pathlength variation. In OCT, the Doppler-shifted optical carrier has a frequency expressed as where is the central optical frequency of the source, is the scanning velocity of the pathlength variation, and is the speed of light. The axial and lateral resolutions of OCT are decoupled from one another; the former being an equivalent to the coherence length of the light source and the latter being a function of the optics. The axial resolution of OCT is defined as where and are respectively the central wavelength and the spectral width of the light source.[19] Frequency domainIn frequency domain OCT (FD-OCT) the broadband interference is acquired with spectrally separated detectors (either by encoding the optical frequency in time with a spectrally scanning source or with a dispersive detector, like a grating and a linear detector array). Due to the Fourier relation (Wiener-Khintchine theorem between the auto correlation and the spectral power density) the depth scan can be immediately calculated by a Fourier-transform from the acquired spectra, without movement of the reference arm.[20][21] This feature improves imaging speed dramatically, while the reduced losses during a single scan improve the signal to noise ratio proportional to the number of detection elements. The parallel detection at multiple wavelength ranges limits the scanning range, while the full spectral bandwidth sets the axial resolution.[22] Spatially encodedSpatially encoded frequency domain OCT (SEFD-OCT, spectral domain or Fourier domain OCT) extracts spectral information by distributing different optical frequencies onto a detector stripe (line-array CCD or CMOS) via a dispersive element (see Fig. 4). Thereby the information of the full depth scan can be acquired within a single exposure. However, the large signal to noise advantage of FD-OCT is reduced due to the lower dynamic range of stripe detectors with respect to single photosensitive diodes, resulting in an SNR (signal to noise ratio) advantage of ~10 dB at much higher speeds. This is not much of a problem when working at 1300 nm, however, since dynamic range is not a serious problem at this wavelength range.[19] The drawbacks of this technology are found in a strong fall-off of the SNR, which is proportional to the distance from the zero delay and a sinc-type reduction of the depth dependent sensitivity because of limited detection linewidth. (One pixel detects a quasi-rectangular portion of an optical frequency range instead of a single frequency, the Fourier-transform leads to the sinc(z) behavior). Additionally the dispersive elements in the spectroscopic detector usually do not distribute the light equally spaced in frequency on the detector, but mostly have an inverse dependence. Therefore, the signal has to be resampled before processing, which can not take care of the difference in local (pixelwise) bandwidth, which results in further reduction of the signal quality. However, the fall-off is not a serious problem with the development of new generation CCD or photodiode array with a larger number of pixels. Synthetic array heterodyne detection offers another approach to this problem without the need for high dispersion. Time encodedTime encoded frequency domain OCT (TEFD-OCT, or swept source OCT) tries to combine some of the advantages of standard TD and SEFD-OCT. Here the spectral components are not encoded by spatial separation, but they are encoded in time. The spectrum is either filtered or generated in single successive frequency steps and reconstructed before Fourier-transformation. By accommodation of a frequency scanning light source (i.e. frequency scanning laser) the optical setup (see Fig. 3) becomes simpler than SEFD, but the problem of scanning is essentially translated from the TD-OCT reference-arm into the TEFD-OCT light source. Here the advantage lies in the proven high SNR detection technology, while swept laser sources achieve very small instantaneous bandwidths (linewidths) at very high frequencies (20–200 kHz). Drawbacks are the nonlinearities in the wavelength (especially at high scanning frequencies), the broadening of the linewidth at high frequencies and a high sensitivity to movements of the scanning geometry or the sample (below the range of nanometers within successive frequency steps). Full-field OCTAn imaging approach to temporal OCT was developed by Claude Boccara's team in 1998,[23] with an acquisition of the images without beam scanning. In this technique called full-field OCT (FF-OCT), unlike other OCT techniques that acquire cross-sections of the sample, the images are here "en-face" i.e. like images of classical microscopy: orthogonal to the light beam of illumination.[24] More precisely, interferometric images are created by a Michelson interferometer where the path length difference is varied by a fast electric component (usually a piezo mirror in the reference arm). These images acquired by a CCD camera are combined in post-treatment (or on-line) by the phase shift interferometry method, where usually 2 or 4 images per modulation period are acquired, depending on the algorithm used.[25][26] The "en-face" tomographic images are thus produced by a wide-field illumination, ensured by the Linnik configuration of the Michelson interferometer where a microscope objective is used in both arms. Furthermore, while the temporal coherence of the source must remain low as in classical OCT (i.e. a broad spectrum), the spatial coherence must also be low to avoid parasitical interferences (i.e. a source with a large size).[27] Line-field (confocal) OCTLine-field confocal optical coherence tomography (LC-OCT) is an imaging technique based on the principle of time-domain OCT with line illumination using a broadband laser and line detection using a line-scan camera.[28] LC-OCT produces B-scans in real-time from multiple A-scans acquired in parallel. The focus is continuously adjusted during the scan of the sample depth, using a high numerical aperture (NA) microscope objective to image with high lateral resolution. By using a supercontinuum laser as a light source and balancing the optical dispersion in the interferometer arms, a quasi-isotropic spatial resolution of ~ 1 µm is achieved at a central wavelength of ~ 800 nm. On the other hand, line illumination and detection, combined with the use of a high NA microscope objective, produce a confocal gate that prevents most scattered light that does not contribute to the signal from being detected by the camera. This confocal gate, which is absent in the full-field OCT technique, gives LC-OCT an advantage in terms of detection sensitivity and penetration in highly scattering media such as skin tissues.[29] Scanning schemesFocusing the light beam to a point on the surface of the sample under test, and recombining the reflected light with the reference will yield an interferogram with sample information corresponding to a single A-scan (Z axis only). Scanning of the sample can be accomplished by either scanning the light on the sample, or by moving the sample under test. A linear scan will yield a two-dimensional data set corresponding to a cross-sectional image (X-Z axes scan), whereas an area scan achieves a three-dimensional data set corresponding to a volumetric image (X-Y-Z axes scan). Single pointSystems based on single point, confocal, or flying-spot time domain OCT, must scan the sample in two lateral dimensions and reconstruct a three-dimensional image using depth information obtained by coherence-gating through an axially scanning reference arm (Fig. 2). Two-dimensional lateral scanning has been electromechanically implemented by moving the sample[21] using a translation stage, and using a novel micro-electro-mechanical system scanner.[30] ParallelParallel or full field OCT using a charge-coupled device (CCD) camera has been used in which the sample is full-field illuminated and en face imaged with the CCD, hence eliminating the electromechanical lateral scan. By stepping the reference mirror and recording successive en face images a three-dimensional representation can be reconstructed. Three-dimensional OCT using a CCD camera was demonstrated in a phase-stepped technique,[31] using geometric phase shifting with a Linnik interferometer,[32] utilising a pair of CCDs and heterodyne detection,[33] and in a Linnik interferometer with an oscillating reference mirror and axial translation stage.[34] Central to the CCD approach is the necessity for either very fast CCDs or carrier generation separate to the stepping reference mirror to track the high frequency OCT carrier. Smart detector arrayA two-dimensional smart detector array, fabricated using a 2 µm complementary metal-oxide-semiconductor (CMOS) process, was used to demonstrate full-field TD-OCT.[35] Featuring an uncomplicated optical setup (Fig. 3), each pixel of the 58x58 pixel smart detector array acted as an individual photodiode and included its own hardware demodulation circuitry. Selected applicationsOptical coherence tomography is an established medical imaging technique and is used across several medical specialties including ophthalmology and cardiology, and is widely used in basic science research applications. OphthalmologyOcular (or ophthalmic) OCT is used heavily by ophthalmologists and Optometrists to obtain high-resolution images of the retina and anterior segment. Owing to OCT's capability to show cross-sections of tissue layers with micrometer resolution, OCT provides a straightforward method of assessing cellular organization, photoreceptor integrity,[36][37][38][39] and axonal thickness in glaucoma,[40] macular degeneration,[41] diabetic macular edema,[42] multiple sclerosis[43] and other eye diseases or systemic pathologies which have ocular signs[44]. More recently, ophthalmic OCT devices have been engineered to perform similar functions as fluorescein angiography, but without the need for injectable dye. This new OCT angiography (OCTA)[45] technique is still in development, but has shown promise for assessing retinal microvasculature pathology. OCTA has the potential for evaluating the effects of intensified antithrombotic therapy. Future research and development will extend the use of OCTA beyond the realm of ophthalmology.[46] CardiologyIn the setting of cardiology, OCT is used to image coronary arteries in order to visualize vessel wall lumen morphology and microstructure at a resolution 10 times higher than other existing modalities such as intravascular ultrasounds and x-ray angiography (Intracoronary Optical Coherence Tomography). For this type of application, approximately 1 mm in diameter fiber-optics catheters are used to access artery lumen through semi-invasive interventions, i.e. Percutaneous coronary intervention. The first demonstration of endoscopic OCT was reported in 1997, by researchers in James Fujimoto laboratory at Massachusetts Institute of Technology, including Prof. Guillermo James Tearney and Prof. Brett Bouma.[47] The first TD-OCT imaging catheter and system was commercialized by LightLab Imaging, Inc., a company based in Massachusetts in 2006. The first FD-OCT imaging study was reported by the laboratory of Prof. Guillermo James Tearney and Prof. Brett Bouma based at Massachusetts General Hospital in 2008.[48] Intravascular FD-OCT was first introduced in the market in 2009 by LightLab Imaging, Inc.[49] and Terumo Corporation launched a second solution for coronary artery imaging in 2012. The higher imaging speed of FD-OCT enabled the widespread adoption of this imaging technology for coronary artery imaging. It is estimated that >100,000 FD-OCT coronary imaging cases are performed yearly, and that the market is increasing by approximately 20% every year.[50] Recent developments of intravascular OCT included the combination with other optical imaging modalities. OCT has been combined with fluorescence molecular imaging to enhance its capability to detect molecular/functional and tissue morphological information at the same time.[51] In a similar way, combination with near-infrared spectroscopy has been also demonstrated. OncologyEndoscopic OCT has been applied to the detection and diagnosis of cancer and precancerous lesions, such as Barrett's esophagus and esophageal dysplasia.[52] DermatologyThe first use of OCT in dermatology dates back to 1997.[53] Since then, OCT has been applied to the diagnosis of various skin lesions including carcinomas.[54][55][56] However, the diagnosis of melanoma using conventional OCT is difficult, especially due to insufficient imaging resolution.[57] Emerging high-resolution OCT techniques such as LC-OCT have the potential to improve the clinical diagnostic process, allowing for the early detection of malignant skin tumors - including melanoma - and a reduction in the number of surgical excisions of benign lesions.[58] Other promising areas of application include the imaging of lesions where excisions are hazardous or impossible and the guidance of surgical interventions through identification of tumor margins. Research applicationsResearchers have used OCT to produce detailed images of mice brains, through a "window" made of zirconia that has been modified to be transparent and implanted in the skull.[59] Optical coherence tomography is also applicable and increasingly used in industrial applications, such as nondestructive testing (NDT), material thickness measurements,[60] and in particular thin silicon wafers[61][62] and compound semiconductor wafers thickness measurements[63][64] surface roughness characterization, surface and cross-section imaging[65][66] and volume loss measurements. OCT systems with feedback can be used to control manufacturing processes. With high speed data acquisition,[67] and sub-micron resolution, OCT is adaptable to perform both inline and off-line.[68] Due to the high volume of produced pills, an interesting field of application is in the pharmaceutical industry to control the coating of tablets.[69] Fiber-based OCT systems are particularly adaptable to industrial environments.[70] These can access and scan interiors of hard-to-reach spaces,[71] and are able to operate in hostile environments—whether radioactive, cryogenic, or very hot.[72] Novel optical biomedical diagnostic and imaging technologies are currently being developed to solve problems in biology and medicine.[73] As of 2014, attempts have been made to use optical coherence tomography to identify root canals in teeth, specifically canal in the maxillary molar, however, there is no difference with the current methods of dental operatory microscope.[74][75]{{primary source inline|reason=Investigational study in which the authors collected the imaging data. |date=October 2016}} Research conducted in 2015 was successful in utilizing a smartphone as an OCT platform, although much work remains to be done before such a platform would be commercially viable.[76] See also{{col div|colwidth=30em}}
References1. ^{{cite journal|last=Bezerra|first=Hiram G.|author2=Costa, Marco A. |author3=Guagliumi, Giulio |author4=Rollins, Andrew M. |author5= Simon, Daniel I. |title=Intracoronary Optical Coherence Tomography: A Comprehensive Review|journal=JACC: Cardiovascular Interventions|date=November 2009|volume=2|issue=11|pages=1035–1046|doi=10.1016/j.jcin.2009.06.019|pmid=19926041|pmc=4113036}} {{Medical imaging}}{{Eye procedures}}{{DEFAULTSORT:Optical Coherence Tomography}}2. ^{{cite journal|last1=Chua|first1=Shunjie|title=High-Definition Optical Coherence Tomography for the Study of Evolution of a Disease|journal=Dermatology Bulletin|date=2015|volume=26|issue=1|pages=2–3|url=https://www.nsc.com.sg/Professional-Education/Documents/NSC-Bulletin-PDF/NSC%20Derm%20Bulletin%20Vol%2026%20Num_1%20Jan%202015.pdf|accessdate=28 May 2015}} 3. ^{{cite journal |first1=A.F. |last1=Fercher |first2=E. |last2=Roth |title=Ophthalmic laser interferometry |journal=Proc. SPIE |volume=658 |pages=48–51 |date=15 September 1986 |doi=10.1117/12.938523 |series=Optical Instrumentation for Biomedical Laser Applications }} 4. ^{{cite conference |first1=A.F. |last1=Fercher |title=Ophthalmic interferometry |book-title=Proceedings of the International Conference on Optics in Life Sciences |location=Garmisch-Partenkirchen, Germany |date=12–16 August 1990 |editor1-first=G. |editor1-last=von Bally |editor2-first=S. |editor2-last=Khanna |pages=221–228 |isbn=0-444-89860-3 }} 5. ^Naohiro Tanno, Tsutomu Ichikawa, Akio Saeki: "Lightwave Reflection Measurement," Japanese Patent # 2010042 (1990) (Japanese Language) 6. ^{{cite conference |author1=Shinji Chiba |author2=Naohiro Tanno |title=Backscattering Optical Heterodyne Tomography |conference=14th Laser Sensing Symposium |year=1991 |language=Japanese }} 7. ^{{cite journal|pmid=1957169|year=1991|last1=Huang|first1=D|last2=Swanson|first2=EA|last3=Lin|first3=CP|last4=Schuman|first4=JS|last5=Stinson|first5=WG|last6=Chang|first6=W|last7=Hee|first7=MR|last8=Flotte|first8=T|last9=Gregory|first9=K|last10=Puliafito|first10=C.|last11=Et|first11=al.|title=Optical coherence tomography|volume=254|issue=5035|pages=1178–81|journal=Science|bibcode= 1991Sci...254.1178H |doi= 10.1126/science.1957169 |display-authors=8|pmc=4638169}} 8. ^{{cite journal|pmid=17994864|year=2007|last1=Zysk|first1=AM|last2=Nguyen|first2=FT|last3=Oldenburg|first3=AL|last4=Marks|first4=DL|last5=Boppart|first5=SA|title=Optical coherence tomography: a review of clinical development from bench to bedside|volume=12|issue=5|pages=051403|doi=10.1117/1.2793736|journal=Journal of Biomedical Optics|bibcode= 2007JBO....12e1403Z }} 9. ^{{cite journal |first1=A.F. |last1=Fercher |first2=C.K. |last2=Hitzenberger |first3=W. |last3=Drexler |first4=G. |last4=Kamp |first5=H. |last5=Sattmann |title=In Vivo Optical Coherence Tomography |journal=American Journal of Ophthalmology |volume=116 |issue=1 |pages=113–114 |date=15 July 1993 |pmid=8328536 |doi=10.1016/S0002-9394(14)71762-3 }} 10. ^{{cite journal|doi=10.1364/OL.18.001864|title=In vivo retinal imaging by optical coherence tomography|pmid=19829430|year=1993|last1=Swanson|first1=E. A.|last2=Izatt|first2=J. A.|last3=Hee|first3=M. R.|last4=Huang|first4=D.|last5=Lin|first5=C. P.|last6=Schuman|first6=J. S.|last7=Puliafito|first7=C. A.|last8=Fujimoto|first8=J. G.|journal=Optics Letters|volume=18|issue=21|pages=1864–6|bibcode= 1993OptL...18.1864S }} 11. ^{{cite journal|doi=10.1038/86589|pmc=1950821|pmid=11283681|year=2001|last1=Drexler|first1=Wolfgang|last2=Morgner|first2=Uwe|last3=Ghanta|first3=Ravi K.|last4=Kärtner|first4=Franz X.|last5=Schuman|first5=Joel S.|last6=Fujimoto|first6=James G.|title=Ultrahigh-resolution ophthalmic optical coherence tomography|journal=Nature Medicine|volume=7|issue=4|pages=502–7}} 12. ^{{cite journal|doi=10.1016/j.ophtha.2003.12.002|pmid=15019397|title=Confocal microscopy: A report by the American Academy of Ophthalmology|first8=WS|last8=Van Meter|first7=IJ|last7=Udell|first6=WJ|last6=Reinhart|first5=DM|last5=Meisler|first4=EJ|last4=Cohen|first3=MW|last3=Belin|first2=DC|year=2004|last2=Musch|last1=Kaufman|first1=S|journal=Ophthalmology|volume=111|issue=2|pages=396–406}} 13. ^{{cite journal|doi=10.1109/51.870229|title=Current technical development of magnetic resonance imaging|year=2000|last1=Riederer|first1=S.J.|journal=IEEE Engineering in Medicine and Biology Magazine|volume=19|pages=34–41|issue=5|pmid=11016028}} 14. ^{{cite book|author1=M. Born |author2=E. Wolf |title=Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light|publisher=Cambridge University Press|year=2000|url=https://books.google.com/books?id=oV80AAAAIAAJ&printsec=frontcover|isbn=978-0-521-78449-8}} 15. ^1 2 {{cite journal|doi=10.1364/OL.13.000186|pmid=19742022|title=Eye-length measurement by interferometry with partially coherent light|year=1988|last1=Fercher|first1=A. F.|last2=Mengedoht|first2=K.|last3=Werner|first3=W.|journal=Optics Letters|volume=13|issue=3|pages=186–8|bibcode= 1988OptL...13..186F }} 16. ^{{cite journal |title= Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy |year=2000|last1= Fujimoto |first1= JG| last2= Pitris |first2= C.| last3= Boppart |first3= SA| last4= Brezinski |first4= ME|journal= Neoplasia |volume=2|issue=1–2|pages=9–25|pmc= 1531864 | doi=10.1038/sj.neo.7900071 | pmid=10933065}} 17. ^{{cite journal |author= Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM, Virgili G |title= Optic nerve head and fibre layer imaging for diagnosing glaucoma |journal=Cochrane Database Syst Rev |volume= |issue=11 |pages= CD008803 |date=2015 |pmid= 26618332 |doi= 10.1002/14651858.CD008803.pub2|pmc=4732281 }} 18. ^{{cite web |url=https://www.mastereyeassociates.com/optical-coherence-tomography-scan |title=Optical Coherence Tomography provides better resolution than an MRI and Helps Diagnose Retina & Corneal Disease and Glaucoma, Part II |last=Unknown |first=Unknown |publisher=mastereyeassociates |date=June 13, 2017 |website=mastereyeassociates.com |access-date=June 13, 2017}} 19. ^1 {{cite book| title= Anterior & Posterior Segment OCT: Current Technology & Future Applications, 1st edition |year=2014|last1=Garg|first1=A. }} 20. ^{{cite journal|doi=10.1109/2944.796348|title=Optical coherence tomography (OCT): a review|year=1999|last1=Schmitt|first1=J.M.|journal=IEEE Journal of Selected Topics in Quantum Electronics|volume=5|pages=1205–1215|issue=4|bibcode=1999IJSTQ...5.1205S}} 21. ^1 {{cite journal|doi=10.1016/0030-4018(95)00119-S|title=Measurement of intraocular distances by backscattering spectral interferometry|year=1995|last1=Fercher|first1=A|last2=Hitzenberger|first2=C.K.|last3=Kamp|first3=G.|last4=El-Zaiat|first4=S.Y.|journal=Optics Communications|volume=117|issue=1–2|pages=43–48|bibcode= 1995OptCo.117...43F }} 22. ^{{cite journal|language=en|doi= 10.1364/BOE.8.003248 |pmid= 28717565 |pmc= 5508826 |title= Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT |year=2017|last1=de Boer|first1= Johannes F. |last2= Leitgeb |first2=R.|last3= Wojtkowski |first3=M.|journal= Biomed. Opt. Express |volume=8|issue = 7|pages=3248–3280}} 23. ^{{cite journal|language=en |title= Full-field optical coherence microscopy |year=1998|last1=Beaurepaire|first1= E. |last2= Boccara |first2= A.C. |journal= Optics Letters |volume=23|issue = 4 |pages=244–246 |doi=10.1364/ol.23.000244|bibcode=1998OptL...23..244B}} 24. ^{{cite journal|language=fr |title= Full-field OCT |year=2006|last1=Dubois|first1= A. |last2= Boccara |first2= A.C. |journal= Médecins/Sciences |volume=22|issue = 10|pages=859–864|doi = 10.1051/medsci/20062210859|pmid= 17026940 }} 25. ^{{cite journal|language=en |title= Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region |year=2006|last1=Dubois|first1= A. |last2= Moneron |first2= G|last3= Boccara |first3= A.C. |journal= Optics Communications |volume=266 |issue= 2 |pages=738–743|bibcode=2006OptCo.266..738D|doi=10.1016/j.optcom.2006.05.016}} 26. ^{{cite journal|language=en |title= Full-field OCT: a non-invasive tool for diagnosis and tissue selection |year=2013|last1=Boccara|first1= A.C. |last2= Harms |first2= F.|last3= Latrive |first3= A. |journal= SPIE Newsroom |doi = 10.1117/2.1201306.004933}} 27. ^{{cite book|language=en |title= Optics in Instruments |chapter=Optical Coherence Tomography |year=2013|last1=Boccara|first1= A.C. |last2= Dubois |first2= A. |pages=101–123| doi = 10.1002/9781118574386.ch3|isbn= 9781118574386 }} 28. ^{{cite journal |title=Line-field confocal time-domain optical coherence tomography with dynamic focusing|year=2018|journal=Opt. Express |volume=26|pages=33534-33542|last1=Dubois|first1=A.|last2=Levecq|first2=O.|last3=Azimani|first3=H.|last4=Davis|first4=A.|last5=Ogien|first5=J.|last6=Siret|first6=D.|last7=Barut|first7=A.}} 29. ^{{cite journal |title=High-resolution line-scanning optical coherence microscopy|year=2007|journal=Opt. Lett. |volume=32|pages=1971-1973 |last1=Chen|first1=Y.|last2=Huang|first2=S.W.|last3=Aguirre|first3=A.D.|last4=Fujimoto|first4=J.G.}} 30. ^{{cite journal|doi=10.1016/j.sna.2004.06.021|title=Micromachined 2-D scanner for 3-D optical coherence tomography|year=2005|journal=Sensors and Actuators A: Physical|volume=117|pages=331–340|issue=2|last1=Yeow|first1=J.T.W.|last2=Yang|first2=V.X.D.|last3=Chahwan|first3=A.|last4=Gordon|first4=M.L.|last5=Qi|first5=B.|last6=Vitkin|first6=I.A.|last7=Wilson|first7=B.C.|last8=Goldenberg|first8=A.A.}} 31. ^{{cite journal|doi=10.1364/OE.11.000105|pmid=19461712|year=2003|last1=Dunsby|first1=C|last2=Gu|first2=Y|last3=French|first3=P|title=Single-shot phase-stepped wide-field coherencegated imaging|volume=11|issue=2|pages=105–15|journal=Optics Express|bibcode= 2003OExpr..11..105D }} 32. ^{{cite journal|doi=10.1016/S0143-8166(01)00146-4|title=Geometric phase-shifting for low-coherence interference microscopy|year=2002|last1=Roy|first1=M|last2=Svahn|first2=P|last3=Cherel|first3=L|last4=Sheppard|first4=CJR|journal=Optics and Lasers in Engineering|volume=37|pages=631–641|bibcode= 2002OptLE..37..631R|authorlink4= Colin_Sheppard|issue=6 }} 33. ^{{cite journal|doi=10.1364/OL.28.000816|pmid=12779156|title=Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras|year=2003|last1=Akiba|first1=M.|last2=Chan|first2=K. P.|last3=Tanno|first3=N.|journal=Optics Letters|volume=28|issue=10|pages=816–8|bibcode= 2003OptL...28..816A }} 34. ^{{cite journal|doi=10.1364/AO.41.000805|pmid=11993929|year=2002|last1=Dubois|first1=A|last2=Vabre|first2=L|last3=Boccara|first3=AC|last4=Beaurepaire|first4=E|title=High-resolution full-field optical coherence tomography with a Linnik microscope|volume=41|issue=4|pages=805–12|journal=Applied Optics|bibcode= 2002ApOpt..41..805D }} 35. ^{{cite journal|doi=10.1364/OL.26.000512|pmid=18040369|title=Optical coherence topography based on a two-dimensional smart detector array|year=2001|last1=Bourquin|first1=S.|last2=Seitz|first2=P.|last3=Salathé|first3=R. P.|journal=Optics Letters|volume=26|issue=8|pages=512–4|bibcode= 2001OptL...26..512B }} 36. ^{{cite web|title=The ABCs of OCT|url=https://www.reviewofoptometry.com/article/the-abcs-of-oct|website=Review of Optometry}} 37. ^{{cite journal|last1=Sherman|first1=J|title=Photoreceptor integrity line joins the nerve fiber layer as key to clinical diagnosis|journal=Optometry|date=June 2009|volume=80|issue=6|pages=277–8|doi=10.1016/j.optm.2008.12.006|pmid=19465337}} 38. ^{{cite web|title=Outer Retinal Layers as Predictors of Vision Loss|url=https://www.reviewofophthalmology.com/article/outer-retinal-layers-as-predictors-of-vision-loss|website=Review of Ophthalmology}} 39. ^{{cite journal|last1=Cuenca|first1=Nicolás|last2=Ortuño-Lizarán|first2=Isabel|last3=Pinilla|first3=Isabel|title=Cellular Characterization of OCT and Outer Retinal Bands Using Specific Immunohistochemistry Markers and Clinical Implications|journal=Ophthalmology|date=March 2018|volume=125|issue=3|pages=407–422|doi=10.1016/j.ophtha.2017.09.016|pmid=29037595|hdl=10045/74474}} 40. ^{{cite journal|last1=Grewal|first1=DS|last2=Tanna|first2=AP|title=Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography|journal=Current Opinion in Ophthalmology|date=March 2013|volume=24|issue=2|pages=150–61|doi=10.1097/ICU.0b013e32835d9e27|pmid=23328662}} 41. ^{{cite journal |last1=Keane |first1=PA |last2=Patel |first2=PJ |last3=Liakopoulos |first3=S |last4=Heussen |first4=FM |last5=Sadda |first5=SR |last6=Tufail |first6=A |title=Evaluation of age-related macular degeneration with optical coherence tomography |journal=Survey of Ophthalmology |date=September 2012 |volume=57 |issue=5 |pages=389–414 |pmid=22898648 |doi=10.1016/j.survophthal.2012.01.006}} 42. ^{{cite journal |last1=Virgili |first1=G |last2=Menchini |first2=F |last3=Casazza |first3=G |last4=Hogg |first4=R |last5=Das |first5=RR |last6=Wang |first6=X |last7=Michelessi |first7=M |title=Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy |journal=Cochrane Database Syst Rev |volume= 1|page=CD008081 |date=7 January 2015 |pmid=25564068 |doi=10.1002/14651858.CD008081.pub3 |pmc=4438571}} 43. ^{{cite journal|last1=Dörr |first1=Jan |last2=Wernecke |first2=KD |last3=Bock |first3=M |last4=Gaede |first4=G |last5=Wuerfel |first5=JT |last6=Pfueller |first6=CF |last7=Bellmann-Strobl |first7=J |last8=Freing |first8=A |last9=Brandt |first9=AU |last10=Friedemann |first10=P |title=Association of retinal and macular damage with brain atrophy in multiple sclerosis|journal=PLoS ONE |date=8 April 2011 |volume=6 |issue=4 |page=e18132 |doi=10.1371/journal.pone.0018132 |pmid=21494659 |bibcode=2011PLoSO...618132D |pmc=3072966 }} {{Open access}} 44. ^{{Cite journal|last=Aik Kah|first=Tan|date=2018|title=CuRRL Syndrome: A Case Series|url=https://actascientific.com/ASOP/pdf/ASOP-01-0016.pdf|journal=Acta Scientific Ophthalmology|volume=1|pages=9–13|via=https://actascientific.com/ASOP/pdf/ASOP-01-0016.pdf}} 45. ^{{Cite journal|title=International Journal of Retina and Vitreous - A review of optical coherence tomography angiography (OCTA)|journal=International Journal of Retina and Vitreous|volume=1|pages=5|doi=10.1186/s40942-015-0005-8|pmid=27847598|pmc=5066513|year=2015|last1=De Carlo|first1=Talisa E|last2=Romano|first2=Andre|last3=Waheed|first3=Nadia K|last4=Duker|first4=Jay S}} 46. ^{{Cite journal|last=Aik Kah|first=Tan|date=June 2018|title=The potential for evaluating the effects of intensified antithrombotic therapy using retinal optical coherence tomography angiography|journal=Medical Hypotheses|volume=115|pages=54–57|doi=10.1016/j.mehy.2018.03.022|pmid=29685198|issn=0306-9877}} 47. ^{{cite journal |last1=Tearney |first1=GJ |last2=Brezinski |first2=ME |last3=Bouma |first3=BE |last4=Boppart |first4=SA |last5=Pitris |first5=C |last6=Southern |first6=JF |last7=Fujimoto |first7=JG |date=27 June 1997 |title=In vivo endoscopic optical biopsy with optical coherence tomography |journal=Science |volume=276 |issue= 5321 |pages=2037–2039 |pmid=9197265 |doi=10.1126/science.276.5321.2037}} 48. ^{{cite journal |last1=Tearney |first1=GJ |last2=Waxman |first2=S |last3=Shishkov |first3=M |last4=Vakoc |first4=BJ |last5=Suter |first5=MJ |last6=Freilich |first6=MI |last7=Desjardins |first7=AE |last8=Oh |first8=WY |last9=Bartlett |first9=LA |last10=Rosenberg |first10=M |last11=Bouma |first11=BE |date=November 2008 |title=Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging |doi=10.1016/j.jcmg.2008.06.007 |journal={{abbr|JACC|Journal of the American College of Cardiology}} Cardiovascular Imaging |volume=1 |issue=6 |pages=752–761 |pmid=19356512 |pmc=2852244 }} 49. ^{{cite web |url=http://www.prnewswire.com/news-releases/lightlab-imaging-returns-to-europcr-2010-with-strong-and-growing-worldwide-acceptance-of-c7-xr-oct-imaging-system-94607959.html |title=LightLab launches FD-OCT in Europe |access-date=9 September 2016}} 50. ^{{cite web |url=http://www.bioopticsworld.com/articles/print/volume-9/issue-6/optical-coherence-tomography-beyond-better-clinical-care-oct-s-economic-impact.html |title=Optical Coherence Tomography: Beyond better clinical care: OCT's economic impact |last=Swanson |first=Eric |date=13 June 2016 |website=BioOptics World |access-date=9 September 2016}} 51. ^{{cite journal |vauthors= Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, Vacas-Jacques P, Rosenberg M, Jaffer FA, Tearney GJ |date=2016 |title=Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging |url=http://imaging.onlinejacc.org/article.aspx?articleid=2502012&resultClick=3 |journal= J Am Coll Cardiol Img |volume= 9|issue=11|pages= 1304–1314|doi=10.1016/j.jcmg.2015.11.020 |pmid= 26971006 |pmc=5010789}} 52. ^{{cite web |url=http://www.bioopticsworld.com/articles/print/volume-6/issue-3/features/optical-coherence-tomography-gastroenterology--advanced-oct--nex.html |title=Next-gen OCT for the esophagus |date=1 May 2013 |website=BioOptics World |access-date=9 September 2016}} 53. ^{{cite journal |last1=Welzel |first1=Julia |year=1997 |title=Optical coherence tomography of the human skin |journal=J. Am. Acad. Dermatology. |volume=37 |pages=958–96}} 54. ^{{cite journal |last1=Boone |first1=M.A. |last2=Norrenberg |first2=S. |last3=Jemec |first3=G.B. |last4=Del Marmol |first4=V. |year=2012 |title=Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. A pilot study. |journal=J. Dermatol. |volume=167 |pages=856–864}} 55. ^{{cite journal |last1=Coleman |first1=A.J. |last2=Richardson |first2=T.J. |last3=Orchard |first3=G. |last4=Uddin |first4=A. |last5=Choi |first5=M.J. |last6=Lacy |first6=K.E.|year=2013 |title=Histological Correlates of Optical Coherence Tomography in Non-Melanoma Skin Cancer. |journal=Skin Res. Technol. |volume=19 |pages=10–19}} 56. ^{{cite journal |last1=Ulrich |first1=M. |last2=Von Braunmuehl |first2=T. |last3=Kurzen |first3=H. |last4=Dirschka |first4=T. |last5=Kellner |first5=C. |last6=Sattler |first6=E. |last7=Berking |first7=C. |last8=Welzel |first8=J. |last9=Reinhold |first9=U. |year=2015 |title=The Sensitivity and Specificity of Optical Coherence Tomography for the Assisted Diagnosis of Nonpigmented Basal Cell Carcinoma: An Observational Study. |journal=Br. J. Dermatol. |volume=173 |pages=428–435}} 57. ^{{cite journal |last1=Levine |first1=A. |last2=Wang |first2=K. |last3=Markowitz |first3=O. |year=2017 |title=Optical Coherence Tomography in the Diagnosis of Skin Cancer. |journal=Dermatol. Clinics |volume=35 |pages=465–488}} 58. ^{{cite journal |title=Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors|year=2018|journal=J. Biomed. Opt. |volume=23|pages=106007|last1=Dubois|first1=A.|last2=Levecq|first2=O.|last3=Azimani|first3=H.|last4=Siret|first4=D.|last5=Barut|first5=A.|last6=Suppa|first6=M.|last7=Del Marmol |first7=V. |last8=Malvehy|first8=J.|doi=10.1117/1.JBO.23.10.106007}} This article contains quotations from this source, which is available under the [https://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0)] license. 59. ^{{cite journal |last1=Damestani |first1=Yasaman |last2=Reynolds |first2=Carissa L. |last3=Szu |first3=Jenny |last4=Hsu |first4=Mike S. |last5=Kodera |first5=Yasuhiro |last6=Binder |first6=Devin K. |last7=Park |first7=B. Hyle |last8=Garay |first8=Javier E. |last9=Rao |first9=Masaru P. |last10=Aguilar |first10=Guillermo |year=2013 |title=Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis |journal=Nanomedicine |volume=9 |issue=8 |pages=1135–8 |doi=10.1016/j.nano.2013.08.002 |pmid=23969102 |lay-summary=http://www.latimes.com/science/sciencenow/la-sci-sn-window-brain-20130903,0,6788242.story |lay-date=September 4, 2013 |lay-source=Los Angeles Times }} 60. ^{{cite patent |country=US |number=7116429 B1 |status=patent |title=Determining thickness of slabs of materials |gdate=2006-10-03 |fdate=2003-01-18 |pridate=2003-01-18 |invent1=Walecki, Wojciech J. |invent2=Van, Phuc |assign1=Walecki, Wojciech J. |assign2=Van, Phuc }}. 61. ^{{cite journal |first1=Wojtek J. |last1=Walecki |first2=Fanny |last2=Szondy |title=Integrated quantum efficiency, reflectance, topography and stress metrology for solar cell manufacturing |journal=Proc. SPIE |volume=7064 |page=70640A |date=2008 |doi=10.1117/12.797541 |series=Interferometry XIV: Applications }} 62. ^{{cite journal |first1=Wojciech J. |last1=Walecki |first2=Kevin |last2=Lai |first3=Alexander |last3=Pravdivtsev |first4=Vitali |last4=Souchkov |first5=Phuc |last5=Van |first6=Talal |last6=Azfar |first7=Tim |last7=Wong |first8=S.H. |last8=Lau |first9=Ann |last9=Koo |title=Low-coherence interferometric absolute distance gauge for study of MEMS structures |journal=Proc. SPIE |volume=5716 |page=182 |date=2005 |doi=10.1117/12.590013 |series=Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV }} 63. ^{{cite journal |last1=Walecki |first1=W.J. |last2=Lai |first2=K. |last3=Souchkov |first3=V. |last4=Van |first4=P. |last5=Lau |first5=S. |last6=Koo |first6=A. |date=2005 |title=Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices |journal=Physica Status Solidi C |volume=2 |issue=3 |pages=984–989 |doi=10.1002/pssc.200460606 |bibcode=2005PSSCR...2..984W }} 64. ^{{cite journal |first1=Wojciech |last1=Walecki |first2=Frank |last2=Wei |first3=Phuc |last3=Van |first4=Kevin |last4=Lai |first5=Tim |last5=Lee |first6=S.H. |last6=Lau |first7=Ann |last7=Koo |title=Novel low coherence metrology for nondestructive characterization of high-aspect-ratio microfabricated and micromachined structures |journal=Proc. SPIE |volume=5343 |page=55 |date=2004 |doi=10.1117/12.530749|series=Reliability, Testing, and Characterization of MEMS/MOEMS III }} 65. ^{{Cite report |last1= Guss |first1= G. |last2= Bass |first2= I. |last3= Hackel |first3= R. |last4= Demos |first4= S.G. |title=High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography |publisher=Lawrence Livermore National Laboratory |id=UCRL-PROC-236270 |date=November 6, 2007 |url=https://e-reports-ext.llnl.gov/pdf/354371.pdf |format=PDF |accessdate=December 14, 2010}} 66. ^{{cite conference |first1=W |last1=Walecki |first2=F |last2=Wei |first3=P |last3=Van |first4=K |last4=Lai |first5=T |last5=Lee |url=http://www.gaas.org/Digests/2004/2004Papers/8.2.pdf |format=PDF |title=Interferometric Metrology for Thin and Ultra-Thin Compound Semiconductor Structures Mounted on Insulating Carriers |conference=CS Mantech Conference |date=2004 }} 67. ^{{cite journal |first1=Wojciech J. |last1=Walecki |first2=Alexander |last2=Pravdivtsev |first3=Manuel, II |last3=Santos |first4=Ann |last4=Koo |title=High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring |journal=Proc. SPIE |volume=6293 |page=62930D |date=August 2006 |doi=10.1117/12.675592 |series=Interferometry XIII: Applications }} 68. ^See, for example: {{cite web |url=http://www.zebraoptical.com/InterferometricProbe.html |title=ZebraOptical Optoprofiler: Interferometric Probe }} 69. ^{{cite patent |country=EP |number=2799842 |status=application |title=A device and a method for monitoring a property of a coating of a solid dosage form during a coating process forming the coating of the solid dosage form |pubdate=2014-11-05 |gdate= |fdate=2014-04-29 |pridate=2013-04-30 |invent1=Markl, Daniel |invent2=Hannesschläger, Günther |invent3=Leitner, Michael |invent4=Sacher, Stephan |invent5=Koller, Daniel |invent6=Khinast, Johannes }}; {{cite patent |country=GB |number=2513581 |status=application }}; {{cite patent |country=US |number=20140322429 A1 |status=application |url=https://www.google.com/patents/US20140322429 }}. 70. ^{{cite journal |first1=Wojtek J. |last1=Walecki |first2=Fanny |last2=Szondy |url=http://lib.semi.ac.cn:8080/tsh/dzzy/wsqk/SPIE/vol7322/73220K.pdf |title=Fiber optics low-coherence IR interferometry for defense sensors manufacturing |journal=Proc. SPIE |volume=7322 |page=73220K |date=30 April 2009 |doi=10.1117/12.818381 |series=Photonic Microdevices/Microstructures for Sensing }} 71. ^{{Cite journal |last1=Dufour |first1=Marc |last2=Lamouche |first2= Guy |last3=Gauthier |first3=Bruno |last4=Padioleau |first4=Christian |last5=Monchalin |first5=Jean-Pierre |title=Inspection of hard-to-reach industrial parts using small diameter probes |journal=Spie Newsroom |date=13 December 2006 |url=http://spie.org/documents/newsroom/imported/467/2006100467.pdf |doi=10.1117/2.1200610.0467 |accessdate=December 15, 2010}} 72. ^{{Cite journal | last1 = Dufour | first1 = M. L. | last2 = Lamouche | first2 = G. | last3 = Detalle | first3 = V. | last4 = Gauthier | first4 = B. | last5 = Sammut | first5 = P. | title = Low-Coherence Interferometry, an Advanced Technique for Optical Metrology in Industry |url = http://www.ndt.net/abstract/wcndt2004/671.htm| doi = 10.1784/insi.47.4.216.63149 | journal = Insight - Non-Destructive Testing and Condition Monitoring | issn = 1354-2575| volume = 47 | issue = 4 | pages = 216–219 |date=April 2005 | pmid = | pmc = | citeseerx = 10.1.1.159.5249 }} 73. ^{{Cite journal |doi=10.1117/2.3201406.03 |title=Developing new optical imaging techniques for clinical use |journal=Spie Newsroom |date=11 June 2014 |first1=Stephen |last1=Boppart |url=http://www.spie.org/newsroom/boppart-video }} 74. ^{{Cite journal|last=Al-Azri|first=Khalifa|last2=Melita|first2=Lucia N.|last3=Strange|first3=Adam P.|last4=Festy|first4=Frederic|last5=Al-Jawad|first5=Maisoon|last6=Cook|first6=Richard|last7=Parekh|first7=Susan|last8=Bozec|first8=Laurent|date=2016-03-10|title=Optical coherence tomography use in the diagnosis of enamel defects|journal=Journal of Biomedical Optics|volume=21|issue=3|pages=036004|doi=10.1117/1.jbo.21.3.036004|pmid=26968386|issn=1083-3668|bibcode=2016JBO....21c6004A}} 75. ^{{cite journal |last1=Iino |first1=Y |last2=Ebihara |first2=A |last3=Yoshioka |first3=T |last4=Kawamura |first4=J |last5=Watanabe |first5=S |last6=Hanada |first6=T |last7=Nakano |first7=K |last8=Sumi |first8=Y |last9=Suda |first9=H |title=Detection of a second mesiobuccal canal in maxillary molars by swept-source optical coherence tomography |journal=Journal of Endodontics |date=November 2014 |volume=40 |issue=11 |pages=1865–1868 |doi=10.1016/j.joen.2014.07.012 |pmid=25266471 }} 76. ^{{Cite journal |first1=Hrebesh M. |last1=Subhash |first2=Josh N. |last2=Hogan |first3=Martin J. |last3=Leahy |date=May 2015 |title=Multiple-reference optical coherence tomography for smartphone applications |journal=Spie Newsroom |url=http://spie.org/x113407.xml |doi=10.1117/2.1201503.005807 }} 6 : Optical coherence tomography|Eye procedures|Laser medicine|Medical equipment|Optical imaging|Optics |
|||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。