词条 | Alkaline water electrolysis |
释义 |
|electrolysistype = Alkaline Water Electrolysis |acatalyst=Ni/Co/Fe |ccatalyst=Ni/C-Pt |membranemat=NiO |aptl=Ti/Ni/zirconium |cptl=Stainless steel mesh |bppmat=Stainless steel |celltemp=60-80C[1] |cellpress=<30 bar[1] |curdens=0.2-0.4 A/cm2[1] |cellvolt=1.8-2.40 V[1] |powdens=to 1.0 W/cm2[1] |cellvolteff=52-69%[1] |specengcomstack=4.2-5.9 kWh/Nm3[1] |specengcomsys=4.5-7.0 kWh/Nm3[1] |ploadrng=20-40%[1] |cellare=< 4 m2[1] |h2prod=<760 Nm3/h[1] |lifetimestack=<90,000 h[1] |degrat=<3 µV/h[1] |syslife=20-30 a[1] }}Alkaline water electrolysis has a long history in the chemical industry. It is a type of electrolyzer that is characterized by having two electrodes operating in a liquid alkaline electrolyte solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH). These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH−) from one electrode to the other.[1][2] A recent comparison showed that state-of-the-art nickel based water electrolyzers with alkaline electrolytes lead to competitive or even better efficiencies than acidic polymer electrolyte membrane water electrolysis with platinum group metal based electrocatalysts.[3] Electrolysis requires minerals to be present in solution. Tap, well, and ground water contains various minerals, some of which are alkaline while others are acidic. Water above a pH of 7.0 is considered alkaline; below 7.0 it is acidic. Electrolysis can occur only if the water is acidic or alkaline. The requirement is that there must be ions in the water to conduct electricity for the water electrolysis process to occur.[4][5] Technical DetailsThe electrodes are typically separated by a thin porous foil (with a thickness between 0.050 to 0.5 mm), commonly referred to as diaphragm or separator.[6] The diaphragm is non-conductive to electrons, thus avoiding electrical shorts between the electrodes while allowing small distances between the electrodes. The ionic conductivity is supplied by the aqueous alkaline solution, which penetrates in the pores of the porous diaphragm. The state-of-the-art diaphragm is Zirfon, a composite material of zirconia and Polysulfone.[7] The diaphragm further avoids the mixing of the produced hydrogen and oxygen at the cathode and anode,[8][9] respectively. Typically, Nickel based metals are used as the electrodes for alkaline water electrolysis.[10] Considering pure metals, Ni is the most active non-noble metal[11] . The high price of good noble metal electrocatalysts such as platinum group metals and their dissolution during the oxygen evolution[12] is a drawback. Ni is considered as more stable during the oxygen evolution.[13] High surface area Ni catalysts can be achieved by dealloying of Nickel-Zinc or Nickel-Aluminium alloys in alkaline solution, commonly referred to as Raney Nickel. In cell tests the best performing electrodes thus far reported consisted of plasma vacuum sprayed Ni alloys on Ni meshes[14] [15]and hot dip galvanized Ni meshes[16] . The latter approach might be interesting for large scale industrial manufacturing as it is cheap and easily scalable. Advantages compared to PEM water electrolysisIn comparison to polymer electrolyte water electrolysis, another established technology to conduct low temperature water electrolysis, advantages of alkaline water electrolysis are mainly:[17] (1) Cheaper catalysts compared to the platinum metal group based catalysts used for PEM water electrolysis. (2) Higher durability due to an exchangeable electrolyte and lower dissolution of anodic catalyst. (3) Higher gas purities due to lower gas diffusivity in alkaline electrolyte. References1. ^1 2 3 4 5 6 7 8 9 10 11 12 13 14 {{cite journal|last=Carmo|first=M|author2=Fritz D |author3=Mergel J |author4=Stolten D |title=A comprehensive review on PEM water electrolysis|journal=Journal of Hydrogen Energy|volume=38|issue=12|pages=4901|year=2013|doi=10.1016/j.ijhydene.2013.01.151}} 2. ^{{cite web|title=Alkaline Water Electrolysis|url=http://www.eolss.net/sample-chapters/c08/e3-13-03-02.pdf|publisher=Energy Carriers and Conversion Systems|accessdate=19 October 2014}} 3. ^{{cite journal|last=Schalenbach|first=M|author2=Tjarks G |author3=Carmo M | author4=Lueke W |author5=Mueller M |author6=Stolten D|title=Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis|journal=Journal of the Electrochemical Society|volume=163|issue=11|pages=F3197|year=2016|doi=10.1149/2.0271611jes|url=http://jes.ecsdl.org/content/163/11/F3197.short}} 4. ^{{cite web|title=USGS Water Science School|url=http://water.usgs.gov/edu/electrical-conductivity.html|accessdate=14 October 2014}} 5. ^{{cite web|title=Argonne National Laboratory Newton Ask a Scientist|url=http://www.newton.dep.anl.gov/askasci/chem07/chem07289.htm|accessdate=14 October 2014}} 6. ^{{cite journal|last=Schalenbach|first=M|author2=Zeradjanin AR |author3=Kasian O | author4=Cherevko S |author5=Mayrhofer KJJ | title=A Perspective on Low-Temperature Water Electrolysis – Challenges in Alkaline and Acidic Technology |journal=International Journal of Electrochemical Science|volume=13|pages=1173–1226|year=2018|doi=10.20964/2018.02.26|url=http://www.electrochemsci.org/papers/vol13/130201173.pdf }} 7. ^{{cite web|title=AGFA Zirfon Perl Product Specification| url=http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/|accessdate=29 January 2019 |archive-url=https://web.archive.org/web/20180423012500/http://www.agfa.com/specialty-products/solutions/membranes/zirfon-perl-utp-500/ |archive-date=2018-04-23 |dead-url=yes}} 8. ^{{cite journal|last=Schalenbach|first=M|author2=Lueke W |author3=Stolten D| title=Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for Alkaline Water Electrolysis |journal= Journal of the Electrochemical Society |volume=163|issue=14|pages=F1480–F1488|year=2016|doi= 10.1149/2.1251613jes|url=http://jes.ecsdl.org/content/163/14/F1480.short }} 9. ^{{cite journal|last=Haug|first=P|author2=Koj M |author3=Turek T| title=Influence of process conditions on gas purity in alkaline water electrolysis|journal=International Journal of Hydrogen Energy|volume=42|issue=15|pages=9406–9418|year=2017|doi=10.1016/j.ijhydene.2016.12.111| url=https://www.sciencedirect.com/science/article/pii/S0360319916336588}} 10. ^{{cite journal|last=Schalenbach|first=M|author2=Zeradjanin AR |author3=Kasian O | author4=Cherevko S |author5=Mayrhofer KJJ | title=A Perspective on Low-Temperature Water Electrolysis – Challenges in Alkaline and Acidic Technology |journal=International Journal of Electrochemical Science|volume=13|pages=1173–1226|year=2018|doi=10.20964/2018.02.26|url=http://www.electrochemsci.org/papers/vol13/130201173.pdf }} 11. ^{{cite journal|last=Quaino|first=P|author2=Juarez F |author3=Santos E| author4=Schmickler W| title=Volcano plots in hydrogen electrocatalysis–uses and abuses |journal=Beilstein Journal of Nanotechnology |volume=42|pages=846–854|year=2014|doi= 10.3762/bjnano.5.96 |pmid=24991521| pmc=4077405 }} 12. ^{{cite journal|last=Schalenbach |first=M |author2=|display-authors=et al | title=The electrochemical dissolution of noble metals in alkaline media |journal= Electrocatalysis|volume=2|issue=2 |pages=153–161|year=2018|doi=10.1007/s12678-017-0438-y }} 13. ^{{cite journal|last=Cherevko |first=S |author2=|display-authors=et al | title=Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability |journal=Catalysis Today |volume=262|pages=170–180|year=2016|doi= 10.1016/j.cattod.2015.08.014| url=https://www.sciencedirect.com/science/article/pii/S0920586115004940}} 14. ^{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Borock V| title=Vacuum Plasma Spraying of High-Performance Electrodes for Alkaline Water Electrolysis |journal=Journal of Thermal Spray Technology |volume=4|issue=2 |pages=185|year=1995|bibcode=1995JTST....4..185S|doi=10.1007/BF02646111}} 15. ^{{cite journal|last=Schiller |first=G |author2=Henne R|author3=Mohr P| author4=Peinecke V| title=High Performance Electrodes for an Advanced Intermittently Operated 10-kW Alkaline Water Electrolyzer |journal=International Journal of Hydrogen Energy|volume=23|issue=9 |pages=761–765|year=1998|doi= 10.1016/S0360-3199(97)00122-5| url=https://www.sciencedirect.com/science/article/pii/S0360319997001225}} 16. ^{{cite journal|last=Schalenbach |first=M |author2=|display-authors=et al | title= An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation|journal= International Journal of Hydrogen Energy |volume=43 |issue=27 |pages=11932–11938 | year=2018|doi= 10.1016/j.ijhydene.2018.04.219 | url=https://www.sciencedirect.com/science/article/pii/S036031991831440X }} 17. ^{{cite journal|last=Schalenbach|first=M|author2=Zeradjanin AR |author3=Kasian O | author4=Cherevko S |author5=Mayrhofer KJJ | title=A Perspective on Low-Temperature Water Electrolysis – Challenges in Alkaline and Acidic Technology |journal=International Journal of Electrochemical Science|volume=13|pages=1173–1226|year=2018|doi=10.20964/2018.02.26|url=http://www.electrochemsci.org/papers/vol13/130201173.pdf }} 5 : Chemical processes|Electrochemistry|Electrolysis|Industrial gases|Hydrogen production |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。