请输入您要查询的百科知识:

 

词条 Atiyah–Hitchin–Singer theorem
释义

  1. References

In differential geometry, the Atiyah–Hitchin–Singer theorem, introduced by {{harvs|txt|last1=Atiyah|first1=Michael|author1-link=Michael Atiyah|last2=Hitchin|first2=Nigel|author2-link=Nigel Hitchin|last3=Singer|first3=Isadore|author3-link=Isadore Singer|year1=1977|year2=1978}}, states that the space of SU(2) anti self dual Yang–Mills fields on a 4-sphere with index k > 0 has dimension 8k – 3.

References

  • {{Citation | last1=Atiyah | first1=Michael F. | author1-link=Michael Atiyah | last2=Hitchin | first2=Nigel J. | author2-link=Nigel Hitchin | last3=Singer | first3=Isadore M. | author3-link=Isadore Singer | title=Deformations of instantons | jstor=67216 |mr=0458424 | year=1977 | journal=Proceedings of the National Academy of Sciences of the United States of America | issn=0027-8424 | volume=74 | issue=7 | pages=2662–2663 | doi=10.1073/pnas.74.7.2662| pmid=16592414 | pmc=431234 }}
  • {{Citation | last1=Atiyah | first1=Michael F. | author1-link=Michael Atiyah | last2=Hitchin | first2=Nigel J. | author2-link=Nigel Hitchin | last3=Singer | first3=Isadore M. | author3-link=Isadore Singer | title=Self-duality in four-dimensional Riemannian geometry | doi=10.1098/rspa.1978.0143 |mr=506229 | year=1978 | journal=Proceedings of the Royal Society A | issn=0080-4630 | volume=362 | issue=1711 | pages=425–461}}
{{DEFAULTSORT:Atiyah-Hitchin-Singer theorem}}{{differential-geometry-stub}}

1 : Differential geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 6:43:20