词条 | Biological patent |
释义 |
A biological patent is a patent on an invention in the field of biology that by law allows the patent holder to exclude others from making, using, selling, or importing the protected invention for a limited period of time. The scope and reach of biological patents vary among jurisdictions,[1] and may include biological technology and products, genetically modified organisms and genetic material. The applicability of patents to substances and processes wholly or partially natural in origin is a subject of debate.[1] Biological patents in different jurisdictionsAustraliaIn February 2013, Judge Justice John Nicholas ruled in the Federal Court of Australia in favour of a Myriad Genetics patent on the BRCA1 gene.[2] This was a landmark ruling, affirming the validity of patents on naturally occurring DNA sequences. However, the U.S. Supreme Court came to the opposite conclusion only a few months later. The Australian ruling has been appealed to the Full Bench of the Federal Court; submissions in the case include consideration of the U.S. Supreme Court ruling.[3][4] This decision was decided in 2014, affirming Nicholas J's decision in favor of Myriad, confirming that isolated genetic material (genes) are valid subjects of patents.[5] As of June 2015 the case was pending hearing in the High Court of Australia.[6] In October 2015 the Australian high court ruled that naturally occurring genes cannot be patented.[7] EuropeEuropean Union directive 98/44/EC (the Biotech Directive) reconciled the legislation of biological patents among certain countries under the jurisdiction of the European Patent Organisation.[1] It allows for the patenting of natural biological products, including gene sequences, as long as they are "isolated from [their] natural environment or produced by means of a technical process."[1]The European Patent Office has ruled that European patents cannot be granted for processes that involve the destruction of human embryos.[8] JapanUnder the umbrella of biotechnology, applications for patents on biological inventions are examined according to general guidelines for patents. In response to requests for additional clarity, the Japan Patent Office (JPO) set forth specific guidelines for biology-related inventions. Over the years, the JPO has continued to amend these guidelines to clarify their application to new technologies. These amendments have broadened the scope of patents within the biotechnology industry. The Japanese Patent Act requires that patented inventions be “industrially applicable”, i.e. they must have market or commercial potential. The JPO explicitly lists “medical activities” among inventions that fall outside the scope of industrially applicable inventions, meaning that methods of surgery, therapy, and the diagnosis of human diseases cannot be patented.[9] United States{{main|Biological patents in the United States}}In the United States, up until 2013 natural biological substances themselves could have been patented (apart from any associated process or usage) if they were sufficiently "isolated" from their naturally occurring states. Prominent historical examples of such patents include those on adrenaline,[10] insulin,[11] vitamin B12,[12] and various genes.[13] A landmark ruling by the U.S. Supreme Court in June 2013 declared naturally occurring DNA sequences ineligible for patents.[14] EthicsThe patenting of genes is a controversial issue in terms of bioethics. Some believe it is unethical to patent genetic material because it treats life as a commodity, or that it undermines the dignity of people and animals by allowing ownership of genes.[15] Some say that living materials occur naturally, and therefore cannot be patented.[16] The American Medical Association's stance is that gene patents inhibit access to genetic testing for patients and hinder research on genetic disease.[17] While some feel that a patent on living material is unethical, others{{who|date=November 2013}} believe that not allowing patents on biotechnological inventions would also be unethical. Supporters of this idea suggest that patents allow the public, as well as policy makers, to hold the owner of the patent(s) accountable. They favor biological patents because they require disclosure of information to the public.[18] Agreements such as the Agreement on Trade-related Aspects of Intellectual Property Rights (TRIPS) require members of the World Trade Organization (WTO) to have intellectual property protection laws in place for most biological innovation{{Why|date=October 2018}}, making it unlikely that many countries will prohibit patents on genes altogether.[16] Some {{who|date=November 2013}} say that patenting genes only commodifies life if a patent applies to an entire human being, arguing that{{who|date=November 2013}} patents on single body parts do not violate human dignity.[19] Another area of controversy in genetic patenting is how gene samples are obtained. Prior consent is required to collect genetic samples, and collection of samples from people requires consent at the national and community levels as well as the individual level. Conflicts have resulted when consent is not obtained at all three levels. The question of benefit sharing also arises when obtaining genetic samples, specifically the potential responsibility of the collector to share any benefits or profits of the discoveries with the population or person from whom the sample came.[16] The last major ethical issue involving gene patents is how the patents are used post-issuance. A major concern {{who|date=November 2013}} is that the use of patented materials and processes will be very expensive or even prohibited to some degree by conditions the patent owner sets.[20] Limiting access like this would directly impact agricultural institutes and university researchers, among others. Some {{who|date=November 2013}} fear that holders of biotechnology patents would exploit their rights in order to make larger profits, at the potential expense of farmers, healthcare patients, and other users of patented technologies. The ethics of using patents to increase profits are also debated. A typical argument in favor of biotech patents is that they enable companies to earn money that the companies in turn invest in further research. Without these patents, some worry that companies would no longer have the resources or motives to perform competitive, viable biotech research.[16] See also
References1. ^1 2 3 {{cite web | url=http://www.genengnews.com/insight-and-intelligenceand153/gene-patents-in-europe-relatively-stable-despite-uncertainty-in-the-u-s/77899385/ | title=Gene Patents in Europe Relatively Stable Despite Uncertainty in the U.S. | work=Genetic Engineering and Biotechnology News | date=2011-03-23 | accessdate=2013-06-13 | author=Sharples, Andrew}} 2. ^{{cite news|title = Landmark patent ruling over breast cancer gene BRCA1|date = February 15, 2013|last = Corderoy|first = Amy|url = http://www.smh.com.au/national/health/landmark-patent-ruling-over-breast-cancer-gene-brca1-20130215-2egsq.html|accessdate = June 14, 2013|newspaper = Sydney Morning Herald}} 3. ^{{cite news|title = BRCA1 gene patent ruling to be appealed|date = March 4, 2013|last = Corderoy|first = Amy|url = http://www.smh.com.au/national/brca1-gene-patent-ruling-to-be-appealed-20130304-2fg1f.html|accessdate = June 14, 2013|newspaper = Sydney Morning Herald}} 4. ^{{cite news|title = Companies can't patent genes, US court rules|date = June 14, 2013|last = Corderoy|first = Amy|url = http://www.smh.com.au/technology/sci-tech/companies-cant-patent-genes-us-court-rules-20130614-2o836.html|accessdate = June 14, 2013|newspaper = Sydney Morning Herald}} 5. ^{{cite news|url=http://www.timebase.com.au/news/2014/AT499-article.html |title=Full Federal Court Upholds Gene Patents: D’Arcy v Myriad Genetics Inc [2014] FCAFC 115}} 6. ^{{cite web |url=http://www.hcourt.gov.au/cases/case_s28-2015 |title=D'Arcy v. Myriad Genetics Inc & Anor}} 7. ^{{cite news|url=https://www.newscientist.com/article/gene-patents-struck-down-by-australias-high-court/ |title=Genes can’t be patented, rules Australia’s High Court |website=www.newscientist.com |date=7 October 2015 |accessdate=27 September 2018 }} 8. ^Decision G2/06 of 25 November 2008, WARF/Stem Cells (OJ EPO 2009, 306). See also Decision T 2221/10 of 4 February 2014, Culturing stem cells/TECHNION. 9. ^{{citation | url = http://sugi.pat.co.jp/wp-content/uploads/2013/05/WIPR-2013-Annual_Page_1.pdf | format = PDF | title = iPS Cell Technology Spurs Biological Patenting in Japan | publisher = World Intellectual Property Review | date = May 2013 | access-date = 2013-08-06 | archive-url = https://web.archive.org/web/20131230235917/http://sugi.pat.co.jp/wp-content/uploads/2013/05/WIPR-2013-Annual_Page_1.pdf | archive-date = 2013-12-30 | dead-url = yes | df = }} 10. ^{{cite web | vauthors = Crouch D | title = Guest Post: Myriad Misunderstanding of Parke-Davis v. Mulford | date = 23 May 2012 | website = Patentlyo | url = https://patentlyo.com/patent/2012/05/myriad-parke-davis.html | accessdate = 26 Mar 2017}} 11. ^{{cite web | title = Why People with Diabetes Can’t Buy Generic Insulin | date = 18 Mar 2015 | website = Johns Hopkins Medicine | url = http://www.hopkinsmedicine.org/news/media/releases/why_people_with_diabetes_cant_buy_generic_insulin | accessdate = 26 Mar 2017}} 12. ^{{cite web | vauthors = Zuhn D | title = Gene Patenting Debate Continues | date = 9 Jun 2009 | website = PatentDocs: Biotech & Pharma Patent Law & News Blog | url = http://www.patentdocs.org/2009/06/gene-patenting-debate-continues.html | accessdate = 26 Mar 2017}} 13. ^{{cite journal | vauthors = Cook-Deegan R, Heaney C | title = Patents in Genomics and Human Genetics | journal = Annu Rev Genom Hum Genet | date = 22 Sep 2010 | volume = 11 | pages = 383–425 | doi = 10.1146/annurev-genom-082509-141811 | pmc = 2935940 | pmid=20590431}} 14. ^Association for Molecular Pathology v. Myriad Genetics, 569 U.S. ___ (2013) [https://www.supremecourt.gov/opinions/12pdf/12-398_8njq.pdf] {{Webarchive|url=https://web.archive.org/web/20130613163742/https://www.supremecourt.gov/opinions/12pdf/12-398_8njq.pdf |date=2013-06-13 }} 15. ^Dresser R. 1988. Ethical and Legal Issues in Patenting New Animal Life. Jurimetrics 28:399-435 16. ^1 2 3 Marchant GE. 2007. Genomics, Ethics, and Intellectual Property. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. Ch 1.5:29-38 17. ^{{cite web|url=http://www.ama-assn.org/ama/pub/physician-resources/medical-science/genetics-molecular-medicine/related-policy-topics/gene-patenting.page?|title=Gene Patenting|publisher=}} 18. ^Caulfield TA, Gold ER. 2000. Genetic Testing. Ethical Concerns, and the Role of Patent Law. Clinical Genetics 57:370-75 19. ^{{cite journal | last1 = Resnik | first1 = DB | year = 2001 | title = DNA Patents and Human dignity | url = | journal = The Journal of Law, Medicine & Ethics | volume = 29 | issue = 1| pages = 152–165 }} 20. ^{{cite journal | last1 = Andrews | first1 = LB | year = 2000 | title = Genes and Patent Policy: Rethinking IP Rights | url = | journal = Nature Reviews Genetics | volume = 3 | issue = | pages = 803–8 | doi=10.1038/nrg909}} External links
5 : Science and law|Biological patent law|Biotechnology law|Emerging technologies|Commercialization of traditional medicines |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。