请输入您要查询的百科知识:

 

词条 Bishop–Phelps theorem
释义

  1. See also

  2. References

In mathematics, the Bishop–Phelps theorem is a theorem about the topological properties of Banach spaces named after Errett Bishop and Robert Phelps, who published its proof in 1961.

Its statement is as follows.

Let B ⊂ E be a bounded, closed, convex set of a real Banach space E. Then the set

is norm-dense in the dual . Note, this theorem fails for complex Banach spaces [1]

See also

  • Banach–Alaoglu theorem
  • Eberlein–Šmulian theorem
  • Mazur's lemma
  • James' theorem
  • Goldstine theorem

References

1. ^{{cite journal|authorlink1=Victor Lomonosov|last1=Lomonosov|first1=Victor|title=A counterexample to the Bishop-Phelps theorem in complex spaces|journal=Israel J. Math.|date=2000|volume=115|pages=25–28}}
  • {{cite journal|last1=Bishop|first1=Errett|authorlink1=Errett Bishop|last2=Phelps|first2=R. R.|authorlink2=Robert R. Phelps|title=A proof that every Banach space is subreflexive|journal=Bulletin of the American Mathematical Society|volume=67|year=1961|pages=97–98|mr=123174|ref=harv|doi=10.1090/s0002-9904-1961-10514-4}}
{{Functional Analysis}}{{DEFAULTSORT:Bishop-Phelps theorem}}{{mathanalysis-stub}}

1 : Theorems in functional analysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 15:16:40