词条 | Bose–Einstein condensation of quasiparticles |
释义 |
Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study. PropertiesBECs form when low temperatures cause nearly all particles to occupy the lowest quantum state. Condensation of quasiparticles occurs in ultracold gases and materials. The lower masses of material quasiparticles relative to atoms lead to higher BEC temperatures. An ideal Bose gas has a phase transitions when inter-particle spacing approaches the thermal De-Broglie wavelength: . The critical concentration is then , leading to a critical temperature: . The particles obey the Bose–Einstein distribution and all occupy the ground state: The Bose gas can be considered in a harmonic trap, , with the ground state occupancy fraction as a function of temperature: This can be achieved by cooling and magnetic or optical control of the system. Spectroscopy can detect shifts in peaks indicating thermodynamic phases with condensation. Quasiparticle BEC can be superfluids. Signs of such states include spatial and temporal coherence and polarization changes. Observation for excitons in solids was seen in 2005 and for magnons in materials and polaritons in microcavities in 2006. Graphene is another important solid state system for studies of condensed matter including quasi particles; It's a 2D electron gas, similar to other thin films.[1][2] ExcitonsExcitons are electron-hole pairs. Similar to helium-4 superfluidity[3] at the -point (2.17K);[4][5] a condensate was proposed by Böer et al. in 1961.[6] Experimental phenomenon were predicted leading to various pulsed laser searches that failed to produce evidence. Signs were first seen by Fuzukawa et al. in 1990, but definite detection was published later in the 2000s. Condensed excitons are a superfluid and will not interact with phonons. While the normal exciton absorption is broadened by phonons, in the superfluid absorption degenerates to a line. TheoryExcitions results from photons exciting electrons creating holes, which are then attracted and can form bound states. The 1s paraexciton and orthoexciton are possible. The 1s triplet spin state, 12.1meV below the degenerate orthoexciton states(lifetime ~ns), is decoupled and has a long lifetime to an optical decay. Dilute gas densities (n~1014cm−3) are possible, but paraexcition generation scales poorly, so significant heating occurs in creating high densities(1017cm−3) preventing BECs. Assuming a thermodynamic phase occurs when separation reaches the de Broglie wavelength() gives: {{NumBlk|||}} Where, is the exciton density, effective mass(of electron mass order) , and , are the Planck and Boltzmann constants. Density depends on the optical generation and lifetime as: . Tuned lasers create excitons which efficiently self-annihilate at a rate: , preventing a high density paraexciton BEC.[7] A potential well limits diffusion, damps exciton decay, and lowers the critical number, yielding an improved critical temperature versus the T3/2 scaling of free particles: ExperimentsIn an ultrapure Cu2O crystal: = 10s. For an achievable T = 0.01K, a manageable optical pumping rate of 105/s should produce a condensate.[8] More detailed calculations by J. Keldysh[9] and later by D. Snoke et al.[10] started a large number of experimental searches into the 1990s that failed to detect signs.[11][12][13] Pulse methods led to overheating, preventing condensate states. Helium cooling allows miili-kelvin setups and continuous wave optics improves on pulsed searches. Relaxation explosion of a condensate at lattice temperature 354 mK was seen by Yoshioka et al. in 2011.[14] Recent experiments by Stolz et al. using a potential trap have given more evidence at ultralow temperature 37 mK.[7] In a parabolic trap with exciton temperature 200 mK and lifetime broadened to 650ns, the dependence of luminescence on laser intensity has a kink which indicates condensation. The theory of a Bose gas is extended to a mean field interacting gas by a Bogoliubov approach to predict the exciton spectrum; The kink is considered a sign of transition to BEC. Signs were seen for a dense gas BEC in a GaAs quantum well.[15] MagnonsMagnons, electron spin waves, can be controlled by a magnetic field. Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible. Magnetic ordering is the analog of superfluidity. The condensate appears as the emission of monochromatic microwaves, which are tunable with the applied magnetic field. In 1999 condensation was demonstrated in antiferromagnetic TlCuCl3,[16] at temperatures as large as 14 K. The high transition temperature (relative to atomic gases) is due to the small mass (near an electron) and greater density. In 2006, condensation in a ferromagnetic Yttrium-iron-garnet thin film was seen even at room temperature[17][18] with optical pumping. Condensation was reported in gadolinium in 2011.[19] Magnon BECs have been considered as qubits for quantum computing.[20] PolaritonsPolaritons, caused by light coupling to excitons, occur in optical cavities and condensation of exciton-polaritons in an optical microcavity was first published in Nature in 2006.[21] Semiconductor cavity polariton gases transition to ground state occupation at 19K.[21] Bogoliubov excitations were seen polariton BECs in 2008.[22]The signatures of BEC were observed at room temperature for the first time in 2013, in a large exciton energy semiconductor device [23][24] and in a polymer microcavity.[25] Other quasiparticlesRotons, an elementary excitation in superfluid 4He introduced by Landau,[26] were discussed by Feynman[27] and others.[28] Rotons condense at low temperature. Experiments have been proposed and the expected spectrum has been studied,[29][30][31] but roton condensates have not been detected. Phonons were first observed in a condensate in 2004 by ultrashort pulses in a bismuth crystal at 7K.[32]Important publications
See also
References1. ^{{Cite journal|url = |title = Bose–Einstein condensation of excitons in bilayer electron systems|date = 9 December 2004|journal = Nature|accessdate = |doi = 10.1038/nature03081|pmid = 15592403|volume=432 |issue = 7018|pages=691–694|arxiv = cond-mat/0404113 |bibcode = 2004Natur.432..691E | last1 = Eisenstein | first1 = JP | last2 = Macdonald | first2 = AH}} {{DEFAULTSORT:Bose-Einstein condensation of quasiparticles}}2. ^{{Cite journal|url = |title = Bose–Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity|date = 1 November 2010|journal = Philosophical Transactions of the Royal Society A|accessdate = |doi = 10.1098/rsta.2010.0208|pmid = 21041225 |volume=368 |issue = 1932|pages=5459–82|bibcode = 2010RSPTA.368.5459B | last1 = Berman | first1 = OL | last2 = Kezerashvili | first2 = RY | last3 = Lozovik | first3 = YE | last4 = Snoke | first4 = DW}} 3. ^{{cite journal | last1 = London | first1 = F | year = 1938 | title = The -Point of Liquid Helium and the Bose–Einstein Condensation | doi = 10.1038/141643a0 | journal = Nature | volume = 141 | issue = 3571 | bibcode=1938Natur.141..643L | pages=643–644}} 4. ^Einstein, A. (1920) Proc. Berlin Acad. Science 5. ^{{cite journal | last1 = Kapiza | first1 = P | year = 1938 | title = Viscosity of Liquid Helium below the λ-Point| doi = 10.1038/141074a0 | journal = Nature | volume = 141 | issue = 3558 | page=74|bibcode = 1938Natur.141...74K }} 6. ^Blatt, J.M., K.W. Boer, and W. Brandt, (1962) Bose–Einstein Condensation of excitons, Phys. Rev. 126.5, 1691 7. ^1 {{Cite journal|url = |title = New Journal of Physics|last = Heinrich Stolz|year = 1050|journal = New Journal of Physics|accessdate = |pmid = |display-authors=etal|doi=10.1088/1367-2630/14/10/105007 |volume=14 |issue = 10|pages=105007|arxiv = 1206.7029 |bibcode = 2012NJPh...14j5007S }} 8. ^Aurora, C.P. (2001) Thermodynamics, McGraw-Hill 9. ^{{cite journal | last1 = Keldysh | first1 = L.V. | year = 1964 | title = | url = | journal = Eksp. Teor. Fiz. | volume = 47 | issue = | page = 1515 }}; {{cite journal | last1 = Keldysh | first1 = L.V. | year = 1965 | title = | url = | journal = Sov. JEPT | volume = 20 | issue = | page = 1018 }} 10. ^{{cite journal | last1 = Snoke | first1 = D.W. | authorlink = David Snoke | last2 = Wolfe | first2 = J.P. | last3 = Mysyrovicz | first3 = A. | year = 1990 | title = Evidence for Bose-Einstein condensation of excitons inCu2O| doi = 10.1103/physrevb.41.11171 | journal = Phys. Rev. B | volume = 41 | issue = 16| page = 11171 |bibcode = 1990PhRvB..4111171S }} 11. ^Naka, N. and Nakasawa, N. (2005) J, Lumin. 112, 11 12. ^{{cite journal | last1 = Joshioka | first1 = K. | last2 = Ideguchi | first2 = T. | last3 = Mysyrovicz | first3 = A | last4 = Kuwata-Gonokami | first4 = M. | year = 2010 | title = Quantum inelastic collisions between paraexcitons inCu2O| doi = 10.1103/physrevb.82.041201 | journal = Phys. Rev. B | volume = 82 | issue = 4| page = 041201 |bibcode = 2010PhRvB..82d1201Y }} 13. ^{{cite journal | last1 = Stolz | first1 = H. | last2 = Semkat | first2 = D. | year = 2010 | title = Unique signatures for Bose-Einstein condensation in the decay luminescence lineshape of weakly interacting excitons in a potential trap| doi = 10.1103/physrevb.81.081302 | journal = Phys. Rev. B | volume = 81 | issue = 8| page = 081302 |arxiv = 0912.2010 |bibcode = 2010PhRvB..81h1302S }} 14. ^{{Cite journal|url = |title = Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures|date = May 31, 2011|journal = Nature Communications|accessdate = |doi = 10.1038/ncomms1335|pmid = |arxiv = 1008.2431 |bibcode = 2011NatCo...2E.328Y |volume=2 |issue = 328|page=328|last1 = Yoshioka|first1 = Kosuke|last2 = Chae|first2 = Eunmi|last3 = Kuwata-Gonokami|first3 = Makoto}} 15. ^{{Cite journal|url = |title = Evidence for a Bose–Einstein condensate of excitons|date = July 2014|journal = EPL |volume=107 |issue = 1|pages=10012|accessdate = |doi = 10.1209/0295-5075/107/10012|pmid = |arxiv = 1304.4101 |bibcode = 2014EL....10710012A |last1 = Alloing|first1 = Mathieu|last2 = Beian|first2 = Mussie|last3 = Lewenstein|first3 = Maciej|last4 = Fuster|first4 = David|last5 = González|first5 = Yolanda|last6 = González|first6 = Luisa|last7 = Combescot|first7 = Roland|last8 = Combescot|first8 = Monique|last9 = Dubin|first9 = François|citeseerx = 10.1.1.771.3531}} 16. ^{{cite journal |first = T.|last = Nikuni|title = Bose–Einstein Condensation of Dilute Magnons in TlCuCl3|journal = Physical Review Letters|volume = 84|year = 1999|doi = 10.1103/PhysRevLett.84.5868|last2 = Oshikawa|first2 = M.|last3 = Oosawa|first3 = A.|last4 = Tanaka|first4 = H.|pmid = 10991075|issue = 25|bibcode = 2000PhRvL..84.5868N|arxiv = cond-mat/9908118|pages = 5868–71}} 17. ^{{cite journal |first = S.O.|last = Demokritov|title = Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping|journal = Nature|volume = 443|pages = 430–433|year = 2006|doi = 10.1038/nature05117|pmid = 17006509|last2 = Demidov|first2 = VE|last3 = Dzyapko|first3 = O|last4 = Melkov|first4 = GA|last5 = Serga|first5 = AA|last6 = Hillebrands|first6 = B|last7 = Slavin|first7 = AN|issue = 7110|bibcode = 2006Natur.443..430D}} 18. ^ 19. ^{{Cite journal|url = |title = Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains|date = Jul 6, 2011|journal = J Phys Condens Matter|accessdate = |doi = 10.1088/0953-8984/23/26/266003|pmid = 21673396 |volume=23 |issue = 26|pages=266003|bibcode = 2011JPCM...23z6003M | last1 = Mathew | first1 = SP | last2 = Kaul | first2 = SN}} 20. ^{{Cite journal|url = |title = Magnon qubit and quantum computing on magnon Bose–Einstein condensates|date = 2 October 2014|journal = Phys. Rev. A |volume=90 |issue = 4|pages=042303 |doi =10.1103/PhysRevA.90.042303|pmid = |bibcode = 2014PhRvA..90d2303A |last1 = Andrianov|first1 = S. N|last2 = Moiseev|first2 = S. A}} 21. ^1 {{Cite journal|url = |title = Bose–Einstein condensation of exciton polaritons|date = 28 September 2006|journal = Nature|accessdate = |doi = 10.1038/nature05131|pmid = 17006506|volume=443 |issue = 7110|pages=409–414|bibcode = 2006Natur.443..409K | last1 = Kasprzak | first1 = J | last2 = Richard | first2 = M | last3 = Kundermann | first3 = S | last4 = Baas | first4 = A | last5 = Jeambrun | first5 = P | last6 = Keeling | first6 = JM | last7 = Marchetti | first7 = FM | last8 = Szymańska | first8 = MH | last9 = André | first9 = R | last10 = Staehli | first10 = JL | last11 = Savona | first11 = V | last12 = Littlewood | first12 = PB | last13 = Deveaud | first13 = B | last14 = Dang | first14 = }} 22. ^{{Cite journal|url = |title = Observation of Bogoliubov excitations in exciton-polariton condensates|date = 2008|journal = Nature Physics |volume=4 |issue = 9|pages=700–705|accessdate = |doi = 10.1038/nphys1034|pmid = |bibcode = 2008NatPh...4..673U |last1 = Utsunomiya|first1 = S|last2 = Tian|first2 = L|last3 = Roumpos|first3 = G|last4 = Lai|first4 = C. W|last5 = Kumada|first5 = N|last6 = Fujisawa|first6 = T|last7 = Kuwata-Gonokami|first7 = M|last8 = Löffler|first8 = A|last9 = Höfling|first9 = S|last10 = Forchel|first10 = A|last11 = Yamamoto|first11 = Y}} 23. ^{{Cite journal|url = http://www.pnas.org/content/110/8/2735|title = Polariton Bose–Einstein condensate at room temperature in an Al(Ga)N nanowire–dielectric microcavity with a spatial potential trap|date = February 19, 2013|journal = Proceedings of the National Academy of Sciences|doi = 10.1073/pnas.1210842110|pmid = 23382183|volume=110 |issue = 8|pages=2735–2740|arxiv = 1208.2723 |bibcode = 2013PNAS..110.2735D |pmc=3581885 | last1 = Das | first1 = A | last2 = Bhattacharya | first2 = P | last3 = Heo | first3 = J | last4 = Banerjee | first4 = A | last5 = Guo | first5 = W}} 24. ^{{Cite news|url = https://arstechnica.com/science/2013/02/bose-einstein-condensate-created-at-room-temperature/|title = SCIENTIFIC METHOD / SCIENCE & EXPLORATION Bose–Einstein condensate created at room temperature|last = Francis|first = Matthew|date = Feb 6, 2013|work = Ars Technica|accessdate = }} 25. ^{{Cite journal|url = |title = Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer|date = 8 December 2013|journal = Nature Materials|accessdate = |doi = 10.1038/nmat3825|pmid = 24317189|volume=13 |issue = 3|pages=247–252|bibcode = 2014NatMa..13..247P | last1 = Plumhof | first1 = JD | last2 = Stöferle | first2 = T | last3 = Mai | first3 = L | last4 = Scherf | first4 = U | last5 = Mahrt | first5 = RF}} 26. ^{{Cite journal|url = |title = |last = L. Landau|date = 1941|journal = J. Phys. USSR |volume=5 |page=71 |accessdate = |doi = |pmid = }} 27. ^{{Cite journal|url = |title = R. P. Feynman|date = 1954|journal = Phys. Rev. |volume=94 |issue = 2|pages=262-277|accessdate = |doi = 10.1103/PhysRev.94.262|pmid = |bibcode = 1954PhRv...94..262F |last1 = Feynman|first1 = R. P}} 28. ^{{Cite journal|url = |title = Bose condensation of moving rotons|date = 1980|journal = Soviet Physics Uspekhi |accessdate = |doi = 10.1070/PU1980v023n06ABEH004937|pmid = |volume=23 |issue = 6|pages=317–318|bibcode = 1980SvPhU..23..317I |last1 = Iordanskiĭ|first1 = S. V|last2 = Pitaevskiĭ|first2 = Lev P}} 29. ^{{Cite journal|url = |title = Bose–Einstein condensation of rotons|last = L. A. Melnikovsky|date = 22 July 2011|journal = Phys. Rev. B |volume=84 |issue = 2|pages=024525|accessdate = |doi = 10.1103/PhysRevB.84.024525|pmid = |arxiv = 1009.4114 |bibcode = 2011PhRvB..84b4525M }} 30. ^{{Cite journal|url = |title = Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate|date = 15 August 2012|journal = Phys. Rev. A |volume=86 |issue = 2|pages=021604|accessdate = |doi = 10.1103/PhysRevA.86.021604|pmid =|arxiv = 1206.2770 |bibcode = 2012PhRvA..86b1604B |last1 = Blakie|first1 = P. B|last2 = Baillie|first2 = D|last3 = Bisset|first3 = R. N}} 31. ^{{Cite journal|url = |title = Quantum Monte Carlo study of a vortex in superfluid He4 and search for a vortex state in the solid|year = 2245|journal = Phys. Rev. B |volume=89 |issue = 22|pages=224516|accessdate = |doi = 10.1103/PhysRevB.89.224516|pmid = |arxiv = 1405.7589 |bibcode = 2014PhRvB..89v4516G |last1 = Galli|first1 = D. E|last2 = Reatto|first2 = L|last3 = Rossi|first3 = M}} 32. ^{{Cite journal|url = |title = Transient Bose–Einstein condensation of phonons|date = 16 February 2004|journal = Physics Letters A|accessdate = |doi = 10.1016/j.physleta.2003.11.063|pmid = |volume=321 |issue = 5–6|pages=381–387|bibcode = 2004PhLA..321..381M |last1 = Misochko|first1 = O. V|last2 = Hase|first2 = Muneaki|last3 = Ishioka|first3 = K|last4 = Kitajima|first4 = M}} 2 : Bose–Einstein condensates|Quasiparticles |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。