词条 | Canberra distance |
释义 |
The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966[1] and refined in 1967[2] by G. N. Lance and W. T. Williams. It is a weighted version of L₁ (Manhattan) distance.[3] The Canberra distance has been used as a metric for comparing ranked lists[3] and for intrusion detection in computer security.[4] DefinitionThe Canberra distance d between vectors p and q in an n-dimensional real vector space is given as follows: where are vectors. The Canberra metric, Adkins form, divides the distance d by (n-Z) where Z is the number of attributes that are 0 for p and q. See also
Notes1. ^{{cite journal|last1=Lance|first1=G. N.|last2=Williams|first2=W. T.|author2-link=W. T. Williams|title=Computer programs for hierarchical polythetic classification ("similarity analysis").|journal=Computer Journal|year=1966|volume=9|issue=1|pages=60–64|doi=10.1093/comjnl/9.1.60}} 2. ^{{cite journal|last1=Lance|first1=G. N.|last2=Williams|first2=W. T.|author2-link=W. T. Williams|title=Mixed-data classificatory programs I.) Agglomerative Systems|journal=Australian Computer Journal|year=1967|pages=15–20}} 3. ^1 Jurman G, Riccadonna S, Visintainer R, Furlanello C: Canberra Distance on Ranked Lists. In Proceedings, Advances in Ranking – NIPS 09 Workshop Edited by Agrawal S, Burges C, Crammer K. 2009, 22–27. 4. ^{{cite journal |first=Syed Masum |last=Emran |first2=Nong |last2=Ye |year=2002 |title=Robustness of chi-square and Canberra distance metrics for computer intrusion detection |journal=Quality and Reliability Engineering International |volume=18 |issue=1 |pages=19–28 |doi=10.1002/qre.441 }} References
{{Geometry-stub}} 2 : Digital geometry|Metric geometry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。