请输入您要查询的百科知识:

 

词条 Cancer biomarker
释义

  1. Definitions of cancer biomarkers

  2. Role of biomarkers in cancer research and medicine

     Uses of Biomarkers in cancer medicine  Risk assessment  Diagnosis  Prognosis and treatment predictions  Pharmacodynamics and pharmacokinetics  Monitoring treatment response  Recurrence  Uses of biomarkers in cancer research  Developing drug targets  Surrogate endpoints 

  3. Types of cancer biomarkers

     Molecular cancer biomarkers 

  4. See also

  5. References

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic,[1] epigenetic,[2] proteomic,[3] glycomic,[4] and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.[5]

While numerous challenges exist in translating biomarker research into the clinical space; a number of gene and protein based biomarkers have already been used at some point in patient care; including, AFP (Liver Cancer), BCR-ABL (Chronic Myeloid Leukemia), BRCA1 / BRCA2 (Breast/Ovarian Cancer), BRAF V600E (Melanoma/Colorectal Cancer), CA-125 (Ovarian Cancer), CA19.9 (Pancreatic Cancer), CEA (Colorectal Cancer), EGFR (Non-small-cell lung carcinoma), HER-2 (Breast Cancer), KIT (Gastrointestinal stromal tumor), PSA (Prostate Specific Antigen) (Prostate Cancer), S100 (Melanoma), and many others.[6][7][8][9][10][11][12][13][14][15] Mutant Proteins themselves detected by Selected Reaction Monitoring (SRM) have been reported to be the most specific biomarkers for cancers because they can only come from an existing tumor.[16]

Definitions of cancer biomarkers

Organizations and publications vary in their definition of biomarker. In many areas of medicine, biomarkers are limited to proteins identifiable or measurable in the blood or urine. However, the term is often used to cover any molecular, biochemical, physiological, or anatomical property that can be quantified or measured.

The National Cancer Institute (NCI), in particular, defines biomarker as a: “A biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. Also called molecular marker and signature molecule." [17]

In cancer research and medicine, biomarkers are used in three primary ways:[18]

  1. To help diagnose conditions, as in the case of identifying early stage cancers (Diagnostic)
  2. To forecast how aggressive a condition is, as in the case of determining a patient's ability to fare in the absence of treatment (Prognostic)
  3. To predict how well a patient will respond to treatment (Predictive)

Role of biomarkers in cancer research and medicine

Uses of Biomarkers in cancer medicine

Risk assessment

Cancer biomarkers, particular those associated with genetic mutations or epigenetic alterations, often offer a quantitative way to determine when individuals are predisposed to particular types of cancers. Notable examples of potentially predictive cancer biomarkers include mutations on genes KRAS, p53, EGFR, erbB2 for colorectal, esophageal, liver, and pancreatic cancer; mutations of genes BRCA1 and BRCA2 for breast and ovarian cancer; abnormal methylation of tumor suppressor genes p16, CDKN2B, and p14ARF for brain cancer; hypermethylation of MYOD1, CDH1, and CDH13 for cervical cancer; and hypermethylation of p16, p14, and RB1, for oral cancer.[19]

Diagnosis

Cancer biomarkers can also be useful in establishing a specific diagnosis. This is particularly the case when there is a need to determine whether tumors are of primary or metastatic origin. To make this distinction, researchers can screen the chromosomal alterations found on cells located in the primary tumor site against those found in the secondary site. If the alterations match, the secondary tumor can be identified as metastatic; whereas if the alterations differ, the secondary tumor can be identified as a distinct primary tumor.[20]

Prognosis and treatment predictions

Another use of biomarkers in cancer medicine is for disease prognosis, which take place after an individual has been diagnosed with cancer. Here biomarkers can be useful in determining the aggressiveness of an identified cancer as well as its likelihood of responding to a given treatment. In part, this is because tumors exhibiting particular biomarkers may be responsive to treatments tied to that biomarker's expression or presence. Examples of such prognostic biomarkers include elevated levels of metallopeptidase inhibitor 1 (TIMP1), a marker associated with more aggressive forms of multiple myeloma,[21] elevated estrogen receptor (ER) and/or progesterone receptor (PR) expression, markers associated with better overall survival in patients with breast cancer;[22][23] HER2/neu gene amplification, a marker indicating a breast cancer will likely respond to trastuzumab treatment;[24][25] a mutation in exon 11 of the proto-oncogene c-KIT, a marker indicating a gastrointestinal stromal tumor (GIST) will likely respond to imatinib treatment;[26][27] and mutations in the tyrosine kinase domain of EGFR1, a marker indicating a patient's non-small-cell lung carcinoma (NSCLC) will likely respond to gefitinib or erlotinib treatment.[28][29]

Pharmacodynamics and pharmacokinetics

Cancer biomarkers can also be used to determine the most effective treatment regime for a particular person's cancer.[30] Because of differences in each person's genetic makeup, some people metabolize or change the chemical structure of drugs differently. In some cases, decreased metabolism of certain drugs can create dangerous conditions in which high levels of the drug accumulate in the body. As such, drug dosing decisions in particular cancer treatments can benefit from screening for such biomarkers. An example is the gene encoding the enzyme thiopurine methyl-transferase (TPMPT).[31] Individuals with mutations in the TPMT gene are unable to metabolize large amounts of the leukemia drug, mercaptopurine, which potentially causes a fatal drop in white blood count for such patients. Patients with TPMT mutations are thus recommended to be given a lower dose of mercaptopurine for safety considerations.[32]

Monitoring treatment response

Cancer biomarkers have also shown utility in monitoring how well a treatment is working over time. Much research is going into this particular area, since successful biomarkers have the potential of providing significant cost reduction in patient care, as the current image-based tests such as CT and MRI for monitoring tumor status are highly costly.[33]

One notable biomarker garnering significant attention is the protein biomarker S100-beta in monitoring the response of malignant melanoma. In such melanomas, melanocytes, the cells that make pigment in our skin, produce the protein S100-beta in high concentrations dependent on the number of cancer cells. Response to treatment is thus associated with reduced levels of S100-beta in the blood of such individuals.[34][35]

Similarly, additional laboratory research has shown that tumor cells undergoing apoptosis can release cellular components such as cytochrome c, nucleosomes, cleaved cytokeratin-18, and E-cadherin. Studies have found that these macromolecules and others can be found in circulation during cancer therapy, providing a potential source of clinical metrics for monitoring treatment.[33]

Recurrence

Cancer biomarkers can also offer value in predicting or monitoring cancer recurrence. The Oncotype DX® breast cancer assay is one such test used to predict the likelihood of breast cancer recurrence. Thist test is intended for women with early-stage (Stage I or II), node-negative, estrogen receptor-positive (ER+) invasive breast cancer who will be treated with hormone therapy. Oncotype DX looks at a panel of 21 genes in cells taken during tumor biopsy. The results of the test are given in the form of a recurrence score that indicates likelihood of recurrence at 10 years.[36][37]

Uses of biomarkers in cancer research

Developing drug targets

In addition to their use in cancer medicine, biomarkers are often used throughout the cancer drug discovery process. For instance, in the 1960s, researchers discovered the majority of patients with chronic myelogenous leukemia possessed a particular genetic abnormality on chromosomes 9 and 22 dubbed the Philadelphia chromosome. When these two chromosomes combine they create a cancer-causing gene known as BCR-ABL. In such patients, this gene acts as the principle initial point in all of the physiological manifestations of the leukemia. For many years, the BCR-ABL was simply used as a biomarker to stratify a certain subtype of leukemia. However, drug developers were eventually able to develop imatinib, a powerful drug that effectively inhibited this protein and significantly decreased production of cells containing the Philadelphia chromosome.[38][39]

Surrogate endpoints

Another promising area of biomarker application is in the area of surrogate endpoints. In this application, biomarkers act as stand-ins for the effects of a drug on cancer progression and survival. Ideally, the use of validated biomarkers would prevent patients from having to undergo tumor biopsies and lengthy clinical trials to determine if a new drug worked. In the current standard of care, the metric for determining a drug's effectiveness is to check if it has decreased cancer progression in humans and ultimately whether it prolongs survival. However, successful biomarker surrogates could save substantial time, effort, and money if failing drugs could be eliminated from the development pipeline before being brought to clinical trials.

Some ideal characteristics of surrogate endpoint biomarkers include:[40][41]

  • Biomarker should be involved in process that causes the cancer
  • Changes in biomarker should correlate with changes in the disease
  • Levels of biomarkers should be high enough that they can be measured easily and reliably
  • Levels or presence of biomarker should readily distinguish between normal, cancerous, and precancerous tissue
  • Effective treatment of the cancer should change the level of the biomarker
  • Level of the biomarker should not change spontaneously or in response to other factors not related to the successful treatment of the cancer

Two areas in particular that are receiving attention as surrogate markers include circulating tumor cells (CTCs)[42][43] and circulating miRNAs.[44][45] Both these markers are associated with the number of tumor cells present in the blood, and as such, are hoped to provide a surrogate for tumor progression and metastasis. However, significant barriers to their adoption include the difficulty of enriching, identifying, and measuring CTC and miRNA levels in blood. New technologies and research are likely necessary for their translation into clinical care.[46][47] [48]

Types of cancer biomarkers

Molecular cancer biomarkers

Tumor Type Biomarker
Breast ER/PR (estrogen receptor/progesteron receptor)[49][50]
HER-2/neu [49][50]
Colorectal EGFR [49][50]
KRAS [49][51]
UGT1A1 [49][51]
Gastric HER-2/neu [49]
GIST c-KIT [49][52]
Leukemia/Lymphoma CD20 [49][53]
CD30 [49][54]
FIP1L1-PDGFRalpha [49][55]
PDGFR [49][56]
Philadelphia Chromosome (BCR/ABL) [49][57][58]
PML/RAR-alpha [49][59]
TPMT [49][60]
UGT1A1 [49][61]
Lung EML4/ALK [49][62][63]
EGFR [49][50]
KRAS [49][50]
Melanoma BRAF [49][63]
PancreasElevated levels of leucine, isoleucine and valine[64]

Other Examples of Biomarkers:

  • Tumor Suppressors Lost in Cancer
    • Examples: BRCA1, BRCA2
  • RNA
    • Examples: mRNA, microRNA [65]
  • Proteins found in body fluids or tissue.
    • Examples: Prostate-specific antigen, and CA-125
  • Antibodies to cancer antigens
    • Examples: Merkel cell polyomavirus[66]

See also

  • Tumor marker

References

1. ^{{Cite journal|last=Calzone|first=Kathleen A.|title=Genetic Biomarkers of Cancer Risk|url=http://linkinghub.elsevier.com/retrieve/pii/S0749208112000095|journal=Seminars in Oncology Nursing|volume=28|issue=2|pages=122–128|doi=10.1016/j.soncn.2012.03.007|pmid=22542320|year=2012}}
2. ^{{Cite journal|last=Herceg|first=Zdenko|last2=Hainaut|first2=Pierre|date=2007-06-01|title=Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis|journal=Molecular Oncology|language=en|volume=1|issue=1|pages=26–41|doi=10.1016/j.molonc.2007.01.004|pmid=19383285|pmc=5543860|issn=1878-0261}}
3. ^{{Cite journal|last=Li|first=Danni|last2=Chan|first2=Daniel W.|date=2014-04-01|title=Proteomic cancer biomarkers from discovery to approval: it's worth the effort|journal=Expert Review of Proteomics|volume=11|issue=2|pages=135–136|doi=10.1586/14789450.2014.897614|pmid=24646122|issn=1478-9450|pmc=4079106}}
4. ^{{Cite journal|last=Aizpurua-Olaizola|first=O.|last2=Toraño|first2=J. Sastre|last3=Falcon-Perez|first3=J.M.|last4=Williams|first4=C.|last5=Reichardt|first5=N.|last6=Boons|first6=G.-J.|title=Mass spectrometry for glycan biomarker discovery|url=http://linkinghub.elsevier.com/retrieve/pii/S0165993617302698|journal=TrAC Trends in Analytical Chemistry|volume=100|pages=7–14|doi=10.1016/j.trac.2017.12.015|year=2018}}
5. ^{{cite journal|last=Mishra|first=Alok|author2=Verma, Mukesh|title=Cancer Biomarkers: Are We Ready for the Prime Time?|journal=Cancers|year=2010|volume=2|issue=1|pages=190–208|doi=10.3390/cancers2010190|pmid=24281040|pmc=3827599}}
6. ^{{cite web|last=Rhea|first=Jeanne|title=Cancer Biomarkers: Surviving the journey from bench to bedside|url=http://www.mlo-online.com/articles/201103/cancer-biomarkers-surviving-the-journey-from-bench-to-bedside.php|publisher=Medical Laboratory Observer|accessdate=26 April 2013|author2=Ross J. Molinaro|date=March 2011}}
7. ^{{cite journal|last=Behne|first=Tara|author2=Copur, M. Sitki|title=Biomarkers for Hepatocellular Carcinoma|journal=International Journal of Hepatology|date=1 January 2012|volume=2012|pages=1–7|doi=10.1155/2012/859076|pmid=22655201|pmc=3357951}}
8. ^{{cite journal|last=Musolino|first=A |author2=Bella, MA |author3=Bortesi, B |author4=Michiara, M |author5=Naldi, N |author6=Zanelli, P |author7=Capelletti, M |author8=Pezzuolo, D |author9=Camisa, R |author10=Savi, M |author11=Neri, TM |author12=Ardizzoni, A|title=BRCA mutations, molecular markers, and clinical variables in early-onset breast cancer: a population-based study.|journal=Breast |date=June 2007|volume=16|issue=3|pages=280–92|pmid=17257844|doi=10.1016/j.breast.2006.12.003}}
9. ^{{cite journal|last=Dienstmann|first=R|author2=Tabernero, J|title=BRAF as a target for cancer therapy.|journal=Anti-Cancer Agents in Medicinal Chemistry|date=March 2011|volume=11|issue=3|pages=285–95|pmid=21426297|doi=10.2174/187152011795347469}}
10. ^{{cite book|last=Lamparella|first=N|author2=Barochia, A |author3=Almokadem, S |title=Impact of genetic markers on treatment of non-small cell lung cancer.|journal=Advances in Experimental Medicine and Biology|year=2013|volume=779|pages=145–64|pmid=23288638|doi=10.1007/978-1-4614-6176-0_6|isbn=978-1-4614-6175-3}}
11. ^{{cite journal|last=Orphanos|first=G|author2=Kountourakis, P|title=Targeting the HER2 receptor in metastatic breast cancer.|journal=Hematology/Oncology and Stem Cell Therapy|year=2012|volume=5|issue=3|pages=127–37|pmid=23095788|doi=10.5144/1658-3876.2012.127}}
12. ^{{cite journal|last=DePrimo|first=S. E.|author2=Huang, X. |author3=Blackstein, M. E. |author4=Garrett, C. R. |author5=Harmon, C. S. |author6=Schoffski, P. |author7=Shah, M. H. |author8=Verweij, J. |author9=Baum, C. M. |author10= Demetri, G. D. |title=Circulating Levels of Soluble KIT Serve as a Biomarker for Clinical Outcome in Gastrointestinal Stromal Tumor Patients Receiving Sunitinib following Imatinib Failure|journal=Clinical Cancer Research|date=8 September 2009|volume=15|issue=18|pages=5869–5877|doi=10.1158/1078-0432.CCR-08-2480 |pmid=19737953 |pmc=3500590}}
13. ^{{cite journal|last=Bantis|first=A|author2=Grammaticos, P|title=Prostatic specific antigen and bone scan in the diagnosis and follow-up of prostate cancer. Can diagnostic significance of PSA be increased?|journal=Hellenic Journal of Nuclear Medicine|date=Sep–Dec 2012|volume=15|issue=3|pages=241–6|pmid=23227460}}
14. ^{{cite journal|last=Kruijff|first=S|author2=Hoekstra, HJ|title=The current status of S-100B as a biomarker in melanoma.|journal=European Journal of Surgical Oncology|date=April 2012|volume=38|issue=4|pages=281–5|pmid=22240030|doi=10.1016/j.ejso.2011.12.005}}
15. ^{{cite journal|last=Ludwig|first=JA|author2=Weinstein, JN|title=Biomarkers in cancer staging, prognosis and treatment selection.|journal=Nature Reviews Cancer|date=November 2005|volume=5|issue=11|pages=845–56|pmid=16239904|doi=10.1038/nrc1739}}
16. ^{{cite journal|last=Wang|first=Qing|title=Mutant proteins as cancer-specific biomarkers.|url=http://www.pnas.org/content/108/6/2444.long|accessdate=10 April 2016|author2=Raghothama Chaerkady|date=December 2010|doi=10.1073/pnas.1019203108|volume=108|issue=6|journal=Proceedings of the National Academy of Sciences|pages=2444–2449|pmid=21248225|pmc=3038743}}
17. ^{{cite web |title=biomarker |work=NCI Dictionary of Cancer Terms |publisher=National Cancer Institute |url=http://www.cancer.gov/dictionary/?CdrID=45618.|date=2011-02-02 }}
18. ^{{cite web|title=Biomarkers in Cancer: An Introductory Guide for Advocates|url=http://researchadvocacy.org/images/uploads/downloads/BiomarkerinCancer_WebDownloadVersion.pdf|publisher=Research Advocay Network|accessdate=26 April 2013|year=2010|archive-url=https://web.archive.org/web/20131029200236/http://researchadvocacy.org/images/uploads/downloads/BiomarkerinCancer_WebDownloadVersion.pdf#|archive-date=2013-10-29|dead-url=yes|df=}}
19. ^{{cite journal|last=Verma|first=M|author2=Manne, U|title=Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations.|journal=Critical Reviews in Oncology/Hematology|date=October 2006|volume=60|issue=1|pages=9–18|pmid=16829121|doi=10.1016/j.critrevonc.2006.04.002}}
20. ^{{cite journal|last=Leong|first=PP|author2=Rezai, B |author3=Koch, WM |author4=Reed, A |author5=Eisele, D |author6=Lee, DJ |author7=Sidransky, D |author8=Jen, J |author9= Westra, WH |title=Distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma.|journal=Journal of the National Cancer Institute|date=Jul 1, 1998|volume=90|issue=13|pages=972–7|pmid=9665144 |doi=10.1093/jnci/90.13.972}}
21. ^{{cite journal |vauthors=Terpos E, Dimopoulos MA, Shrivastava V |title=High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents |journal=Leukemia Research |volume=34 |issue=3 |pages=399–402 |date=March 2010 |pmid=19781774 |doi=10.1016/j.leukres.2009.08.035 |url=http://linkinghub.elsevier.com/retrieve/pii/S0145-2126(09)00443-3|display-authors=etal}}
22. ^{{cite journal|last=Kuukasjärvi|first=T|author2=Kononen, J |author3=Helin, H |author4=Holli, K |author5= Isola, J |title=Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy.|journal=Journal of Clinical Oncology|date=September 1996|volume=14|issue=9|pages=2584–9|pmid=8823339 |doi=10.1200/jco.1996.14.9.2584}}
23. ^{{cite journal|last=Harris|first=L |author2=Fritsche, H |author3=Mennel, R |author4=Norton, L |author5=Ravdin, P |author6=Taube, S |author7=Somerfield, MR |author8=Hayes, DF |author9=Bast RC, Jr |author10=American Society of Clinical Oncology |title=American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer.|journal=Journal of Clinical Oncology |date=Nov 20, 2007|volume=25|issue=33|pages=5287–312|pmid=17954709|doi=10.1200/JCO.2007.14.2364|pmc=2793754}}
24. ^{{cite journal|last=Kröger|first=N|author2=Milde-Langosch, K |author3=Riethdorf, S |author4=Schmoor, C |author5=Schumacher, M |author6=Zander, AR |author7= Löning, T |title=Prognostic and predictive effects of immunohistochemical factors in high-risk primary breast cancer patients.|journal=Clinical Cancer Research |date=Jan 1, 2006|volume=12|issue=1|pages=159–68|pmid=16397038|doi=10.1158/1078-0432.CCR-05-1340}}
25. ^{{cite journal|last=Vrbic|first=S|author2=Pejcic, I |author3=Filipovic, S |author4=Kocic, B |author5= Vrbic, M |title=Current and future anti-HER2 therapy in breast cancer.|journal=Journal of the Balkan Union of Oncology|date=Jan–Mar 2013|volume=18|issue=1|pages=4–16|pmid=23613383}}
26. ^{{cite journal|last=Yoo|first=C|author2=Ryu, MH |author3=Ryoo, BY |author4=Beck, MY |author5= Kang, YK |title=Efficacy, safety, and pharmacokinetics of imatinib dose escalation to 800 mg/day in patients with advanced gastrointestinal stromal tumors.|journal=Investigational New Drugs|date=Apr 17, 2013|pmid=23591629|doi=10.1007/s10637-013-9961-8|volume=31|issue=5|pages=1367–74}}
27. ^{{cite journal|last=Demetri|first=GD |author2=van Oosterom, AT |author3=Garrett, CR |author4=Blackstein, ME |author5=Shah, MH |author6=Verweij, J |author7=McArthur, G |author8=Judson, IR |author9=Heinrich, MC |author10=Morgan, JA |author11=Desai, J |author12=Fletcher, CD |author13=George, S |author14=Bello, CL |author15=Huang, X |author16=Baum, CM |author17=Casali, PG |title=Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial.|journal=Lancet|date=Oct 14, 2006|volume=368|issue=9544|pages=1329–38|pmid=17046465|doi=10.1016/S0140-6736(06)69446-4}}
28. ^{{cite journal|last=Herbst|first=RS |author2=Prager, D |author3=Hermann, R |author4=Fehrenbacher, L |author5=Johnson, BE |author6=Sandler, A |author7=Kris, MG |author8=Tran, HT |author9=Klein, P |author10=Li, X |author11=Ramies, D |author12=Johnson, DH |author13=Miller, VA |author14=TRIBUTE Investigator Group |title=TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer.|journal=Journal of Clinical Oncology |date=Sep 1, 2005|volume=23|issue=25|pages=5892–9|pmid=16043829|doi=10.1200/JCO.2005.02.840}}
29. ^{{cite journal|last=Lynch|first=TJ |author2=Bell, DW |author3=Sordella, R |author4=Gurubhagavatula, S |author5=Okimoto, RA |author6=Brannigan, BW |author7=Harris, PL |author8=Haserlat, SM |author9=Supko, JG |author10=Haluska, FG |author11=Louis, DN |author12=Christiani, DC |author13=Settleman, J |author14=Haber, DA|title=Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.|journal=The New England Journal of Medicine|date=May 20, 2004|volume=350|issue=21|pages=2129–39|pmid=15118073|doi=10.1056/NEJMoa040938|url=http://repository.cshl.edu/22429/1/EGFR%20Mutations.pdf }}
30. ^{{cite journal |author=Sawyers CL |title=The cancer biomarker problem |journal=Nature |volume=452 |issue=7187 |pages=548–52 |date=April 2008 |pmid=18385728 |doi=10.1038/nature06913 }}
31. ^{{cite journal|last=Karas-Kuzelicki|first=N|author2=Mlinaric-Rascan, I|title=Individualization of thiopurine therapy: thiopurine S-methyltransferase and beyond.|journal=Pharmacogenomics|date=August 2009|volume=10|issue=8|pages=1309–22|pmid=19663675|doi=10.2217/pgs.09.78}}
32. ^{{cite journal |vauthors=Relling MV, Hancock ML, Rivera GK |title=Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus |journal=Journal of the National Cancer Institute |volume=91 |issue=23 |pages=2001–8 |date=December 1999 |pmid=10580024 |url=http://jnci.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=10580024 |doi=10.1093/jnci/91.23.2001|display-authors=etal}}
33. ^{{cite journal|last=Schneider|first=John|author2=Manpreet K Sidhu |author3=Cynthia Doucet |author4=Noemi Kiss |author5=Robert L Ohsfeldt |author6=Donald Chalfin |title=Economics of Cancer Biomarkers|journal=Personalized Medicine|year=2012|volume=9|issue=8|pages=829–837|url=http://www.medscape.com/viewarticle/775060_3|doi=10.2217/pme.12.87|pmid=29776231}}
34. ^{{cite journal|last=Henze|first=G|author2=Dummer, R |author3=Joller-Jemelka, HI |author4=Böni, R |author5= Burg, G |title=Serum S100--a marker for disease monitoring in metastatic melanoma.|journal=Dermatology |year=1997|volume=194|issue=3|pages=208–12|pmid=9187834 |doi=10.1159/000246103}}
35. ^{{cite journal|last=Harpio|first=R|author2=Einarsson, R|title=S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma.|journal=Clinical Biochemistry|date=July 2004|volume=37|issue=7|pages=512–8|pmid=15234232|doi=10.1016/j.clinbiochem.2004.05.012}}
36. ^{{cite journal|last=Lamond|first=NW|author2=Skedgel, C |author3=Younis, T |title=Is the 21-gene recurrence score a cost-effective assay in endocrine-sensitive node-negative breast cancer?|journal=Expert Review of Pharmacoeconomics & Outcomes Research|date=April 2013|volume=13|issue=2|pages=243–50|pmid=23570435|doi=10.1586/erp.13.4}}
37. ^{{cite journal|last=Biroschak|first=JR|author2=Schwartz, GF |author3=Palazzo, JP |author4=Toll, AD |author5=Brill, KL |author6=Jaslow, RJ |author7= Lee, SY |title=Impact of Oncotype DX on Treatment Decisions in ER-Positive, Node-Negative Breast Cancer with Histologic Correlation.|journal=The Breast Journal|date=May 2013|volume=19|issue=3|pages=269–75|pmid=23614365|doi=10.1111/tbj.12099}}
38. ^{{cite journal|last=Moen|first=MD|author2=McKeage, K |author3=Plosker, GL |author4= Siddiqui, MA |title=Imatinib: a review of its use in chronic myeloid leukaemia.|journal=Drugs|year=2007|volume=67|issue=2|pages=299–320|pmid=17284091 |doi=10.2165/00003495-200767020-00010}}
39. ^{{cite news|last=Lemonick|first=Michael|title=New Hope for Cancer|url=http://www.time.com/time/magazine/article/0,9171,999978,00.html|accessdate=26 April 2013|newspaper=Time Magazine|date=May 28, 2001|author2=Alice Park}}
40. ^{{cite journal|last=Price|first=C|author2=McDonnell, D|title=Effects of niobium filtration and constant potential on the sensitometric responses of dental radiographic films.|journal=Dentomaxillofacial Radiology|date=February 1991|volume=20|issue=1|pages=11–6|pmid=1884846|doi=10.1259/dmfr.20.1.1884846}}
41. ^{{cite journal|last=Cohen|first=Victor|author2=Fadlo Khuri|title=Progress in Lung Cancer Chemoprevention|journal=Cancer Control|year=2003|volume=10|issue=4|pages=315–324|url=http://aamhf.com/CCJRoot/v10n4/pdf/315.pdf|accessdate=26 April 2013}}{{Dead link|date=November 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
42. ^{{cite journal|last=Lu|first=CY|author2=Tsai, HL |author3=Uen, YH |author4=Hu, HM |author5=Chen, CW |author6=Cheng, TL |author7=Lin, SR |author8= Wang, JY |title=Circulating tumor cells as a surrogate marker for determining clinical outcome to mFOLFOX chemotherapy in patients with stage III colon cancer.|journal=British Journal of Cancer|date=Mar 5, 2013|volume=108|issue=4|pages=791–7|pmid=23422758|doi=10.1038/bjc.2012.595 |pmc=3590657}}
43. ^{{cite journal|last=Balic|first=M|author2=Williams, A |author3=Lin, H |author4=Datar, R |author5= Cote, RJ |title=Circulating tumor cells: from bench to bedside.|journal=Annual Review of Medicine|year=2013|volume=64|pages=31–44|pmid=23092385|doi=10.1146/annurev-med-050311-163404 |pmc=3809995}}
44. ^{{cite journal|last=Madhavan|first=D |author2=Zucknick, M |author3=Wallwiener, M |author4=Cuk, K |author5=Modugno, C |author6=Scharpff, M |author7=Schott, S |author8=Heil, J |author9=Turchinovich, A |author10=Yang, R |author11=Benner, A |author12=Riethdorf, S |author13=Trumpp, A |author14=Sohn, C |author15=Pantel, K |author16=Schneeweiss, A |author17=Burwinkel, B |title=Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer.|journal=Clinical Cancer Research |date=Nov 1, 2012|volume=18|issue=21|pages=5972–82|pmid=22952344|doi=10.1158/1078-0432.CCR-12-1407}}
45. ^{{cite journal|last=Redova|first=M|author2=Sana, J |author3=Slaby, O |title=Circulating miRNAs as new blood-based biomarkers for solid cancers.|journal=Future Oncology |date=March 2013|volume=9|issue=3|pages=387–402|pmid=23469974|doi=10.2217/fon.12.192}}
46. ^{{cite journal|last=Joosse|first=SA|author2=Pantel, K|title=Biologic challenges in the detection of circulating tumor cells.|journal=Cancer Research|date=Jan 1, 2013|volume=73|issue=1|pages=8–11|pmid=23271724|doi=10.1158/0008-5472.CAN-12-3422}}
47. ^{{cite journal|last=Hou|first=HW|author2=Warkiani, ME |author3=Khoo, BL |author4=Li, ZR |author5=Soo, RA |author6=Tan, DS |author7=Lim, WT |author8=Han, J |author9=Bhagat, AA |author10= Lim, CT |title=Isolation and retrieval of circulating tumor cells using centrifugal forces.|journal=Scientific Reports|year=2013|volume=3|pages=1259|pmid=23405273|doi=10.1038/srep01259 |pmc=3569917}}
48. ^{{cite journal |last1=Dhondt |first1=Bert |last2=De Bleser |first2=Elise |last3=Claeys |first3=Tom |last4=Buelens |first4=Sarah |last5=Lumen |first5=Nicolaas |last6=Vandesompele |first6=Jo |last7=Beckers |first7=Anneleen |last8=Fonteyne |first8=Valerie |last9=Van der Eecken |first9=Kim |last10=De Bruycker |first10=Aurélie |last11=Paul |first11=Jérôme |last12=Gramme |first12=Pierre |last13=Ost |first13=Piet |title=Discovery and validation of a serum microRNA signature to characterize oligo- and polymetastatic prostate cancer: not ready for prime time |journal=World Journal of Urology |date=21 December 2018 |doi=10.1007/s00345-018-2609-8|pmid=30578441 |hdl=1854/LU-8586484 |url=https://biblio.ugent.be/publication/8586484 }}
49. ^10 11 12 13 14 15 16 17 18 {{cite web |title=Table of Pharmacogenomic Biomarkers in Drug Labels |url=https://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. |publisher=U.S Food and Drug Administration}}
50. ^{{cite web |title=Tumor Markers Fact Sheet |url=http://www.cancer.org/acs/groups/cid/documents/webcontent/003189-pdf.pdf |publisher=American Cancer Society }}
51. ^{{cite book|author=Heinz-Josef Lenz|title=Biomarkers in Oncology: Prediction and Prognosis|url=https://books.google.com/books?id=57gRNtnnMNEC|date=2012-09-18|publisher=Springer Science & Business Media|isbn=978-1-4419-9754-8|page=263}}
52. ^{{cite journal |vauthors=Gonzalez RS, Carlson G, Page AJ, Cohen C |title=Gastrointestinal stromal tumor markers in cutaneous melanomas: relationship to prognostic factors and outcome |journal=American Journal of Clinical Pathology |volume=136 |issue=1 |pages=74–80 |date=July 2011 |pmid=21685034 |doi=10.1309/AJCP9KHD7DCHWLMO }}
53. ^{{cite journal |vauthors=Tam CS, Otero-Palacios J, Abruzzo LV |title=Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients |journal=British Journal of Haematology |volume=141 |issue=1 |pages=36–40 |date=April 2008 |pmid=18324964 |doi=10.1111/j.1365-2141.2008.07012.x |display-authors=etal}}
54. ^{{cite journal |vauthors=Zhang M, Yao Z, Patel H |title=Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1 |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=104 |issue=20 |pages=8444–8 |date=May 2007 |pmid=17488826 |pmc=1895969 |doi=10.1073/pnas.0702496104 |url=http://www.pnas.org/cgi/pmidlookup?view=long&pmid=17488826|display-authors=etal}}
55. ^{{cite journal |vauthors=Yamada Y, Sanchez-Aguilera A, Brandt EB |title=FIP1L1/PDGFRalpha synergizes with SCF to induce systemic mastocytosis in a murine model of chronic eosinophilic leukemia/hypereosinophilic syndrome |journal=Blood |volume=112 |issue=6 |pages=2500–7 |date=September 2008 |pmid=18539901 |doi=10.1182/blood-2007-11-126268 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=18539901|display-authors=etal}}
56. ^{{cite journal |author=Nimer SD |title=Myelodysplastic syndromes |journal=Blood |volume=111 |issue=10 |pages=4841–51 |date=May 2008 |pmid=18467609 |doi=10.1182/blood-2007-08-078139 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=18467609}}
57. ^{{cite journal |vauthors=Ottmann O, Dombret H, Martinelli G |title=Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study |journal=Blood |volume=110 |issue=7 |pages=2309–15 |date=October 2007 |pmid=17496201 |doi=10.1182/blood-2007-02-073528 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=17496201|display-authors=etal}}
58. ^{{cite journal |vauthors=Boulos N, Mulder HL, Calabrese CR |title=Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia |journal=Blood |volume=117 |issue=13 |pages=3585–95 |date=March 2011 |pmid=21263154 |pmc=3072880 |doi=10.1182/blood-2010-08-301267 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=21263154|display-authors=etal}}
59. ^{{cite journal |vauthors=O'Connell PA, Madureira PA, Berman JN, Liwski RS, Waisman DM |title=Regulation of S100A10 by the PML-RAR-α oncoprotein |journal=Blood |volume=117 |issue=15 |pages=4095–105 |date=April 2011 |pmid=21310922 |doi=10.1182/blood-2010-07-298851 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=21310922}}
60. ^{{cite journal |vauthors=Duffy MJ, Crown J |title=A personalized approach to cancer treatment: how biomarkers can help |journal=Clinical Chemistry |volume=54 |issue=11 |pages=1770–9 |date=November 2008 |pmid=18801934 |doi=10.1373/clinchem.2008.110056 |url=http://www.clinchem.org/cgi/pmidlookup?view=long&pmid=18801934}}
61. ^{{cite journal |vauthors=Ribrag V, Koscielny S, Casasnovas O |title=Pharmacogenetic study in Hodgkin lymphomas reveals the impact of UGT1A1 polymorphisms on patient prognosis |journal=Blood |volume=113 |issue=14 |pages=3307–13 |date=April 2009 |pmid=18768784 |doi=10.1182/blood-2008-03-148874 |url=http://bloodjournal.hematologylibrary.org/cgi/pmidlookup?view=long&pmid=18768784|display-authors=etal}}
62. ^{{cite journal |vauthors=Li Y, Ye X, Liu J, Zha J, Pei L |title=Evaluation of EML4-ALK fusion proteins in non-small cell lung cancer using small molecule inhibitors |journal=Neoplasia |volume=13 |issue=1 |pages=1–11 |date=January 2011 |pmid=21245935 |pmc=3022423 |doi=10.1593/neo.101120 }}
63. ^{{cite journal |vauthors=Pao W, Girard N |title=New driver mutations in non-small-cell lung cancer |journal=Lancet Oncology |volume=12 |issue=2 |pages=175–80 |date=February 2011 |pmid=21277552 |doi=10.1016/S1470-2045(10)70087-5 |url=http://linkinghub.elsevier.com/retrieve/pii/S1470-2045(10)70087-5}}
64. ^{{Cite web|url=http://singularityhub.com/2014/10/02/promising-method-for-detecting-pancreatic-cancer-years-before-traditional-diagnosis/|title=Promising Method for Detecting Pancreatic Cancer Years Before Traditional Diagnosis|last=Hewes|first=Arlington|date=October 2, 2014|website=Singularity HUB|access-date=2016-04-22}}
65. ^{{cite journal |vauthors=Bartels CL, Tsongalis GJ |title=MicroRNAs: novel biomarkers for human cancer |journal=Clinical Chemistry |volume=55 |issue=4 |pages=623–31 |date=April 2009 |pmid=19246618 |doi=10.1373/clinchem.2008.112805 |url=http://www.clinchem.org/cgi/pmidlookup?view=long&pmid=19246618}}
66. ^{{Cite journal | doi=10.1002/cncr.30475| pmid=27925665| pmc=5384867|title = Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: A prospective validation study| journal=Cancer| volume=123| issue=8| pages=1464–1474|year = 2017|last1 = Paulson|first1 = Kelly G.| last2=Lewis| first2=Christopher W.| last3=Redman| first3=Mary W.| last4=Simonson| first4=William T.| last5=Lisberg| first5=Aaron| last6=Ritter| first6=Deborah| last7=Morishima| first7=Chihiro| last8=Hutchinson| first8=Kathleen| last9=Mudgistratova| first9=Lola| last10=Blom| first10=Astrid| last11=Iyer| first11=Jayasri| last12=Moshiri| first12=Ata S.| last13=Tarabadkar| first13=Erica S.| last14=Carter| first14=Joseph J.| last15=Bhatia| first15=Shailender| last16=Kawasumi| first16=Masaoki| last17=Galloway| first17=Denise A.| last18=Wener| first18=Mark H.| last19=Nghiem| first19=Paul}}

2 : Oncology|Biomarkers

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 16:46:44