请输入您要查询的百科知识:

 

词条 Phobos (moon)
释义

  1. Discovery

  2. Physical characteristics

      Named geological features    {{anchor|Craters on Phobos}} Craters on Phobos    Other named features  

  3. Orbital characteristics

      Solar transits    Predicted destruction  

  4. Origin

  5. Shklovsky's "Hollow Phobos" hypothesis

  6. Exploration

      Launched missions    Missions considered    Proposed missions    As part of a human mission to Mars  

  7. See also

  8. References

  9. External links

{{redirect|Mars I|the Soviet Mars probe|Mars 1|other uses|Mars 1 (disambiguation)}}{{Use dmy dates|date=March 2019}}{{Infobox planet
| name = Phobos
| alt_names = Mars I
| adjectives = Phobian, Phobosian
| image = Phobos colour 2008.jpg
| caption = Enhanced-color image of Phobos from the Mars Reconnaissance Orbiter with Stickney crater on the right
| bgcolour = #ffc0c0
| discoverer = Asaph Hall
| discovered = 17 August 1877
| epoch = J2000
| semimajor = {{val|9376|u=km}}[1] (2.76 Mars radii)
| eccentricity = {{val|0.0151}}[1]
| periapsis = {{val|9234.42|u=km}}[1]
| apoapsis = {{val|9517.58|u=km}}[1]
| period = {{val|0.31891023|ul=d}}
(7 h 39.2 min)
| avg_speed = 2.138 km/s[1]
| inclination = 1.093° (to Mars's equator)
0.046° (to local Laplace plane)
26.04° (to the ecliptic)
| satellite_of = Mars
| mean_radius = {{val|11.2667|u=km}}
({{val|1.76941|u=mEarths}})
| dimensions = {{nowrap|27 × 22 × 18 km}}[1]
| surface_area = {{val|1548.3|u=km2}}[1]
(3.03545 µEarths)
| volume = {{val|5783.61|u=km3}}
({{val|5.33933|u=nEarths}})
| mass = {{val|1.0659|e=16|u=kg}}[1]
({{val|1.78477|u=nEarths}})
| density = {{val|1.876|u=g/cm3}}[1]
| surface_grav = {{val|0.0057|u=m/s2}}[1]
(581.4 µ g)
| escape_velocity = 11.39 m/s
(41 km/h)[1]
| rotation = Synchronous
| rot_velocity = {{Convert|11.0|km/h|abbr=on}} (at longest axis)
| axial_tilt = 0°
| albedo = 0.071±0.012[2]
| magnitude = 11.8[3]
| single_temperature = ≈ 233 K
}}Phobos ({{IPAc-en|ˈ|f|oʊ|b|ə|s}} {{Respell|FOH|bəs}}, {{IPAc-en|-|b|ɒ|s}} {{Respell|-boss}},[4] {{ety|el|Φόβος}}; systematic designation: {{nowrap|Mars I}}) is the innermost and larger of the two natural satellites of Mars,[5] the other being Deimos. Both moons were discovered in 1877 by American astronomer Asaph Hall.

Phobos is a small, irregularly shaped object with a mean radius of {{convert|11|km|sigfig=1|abbr=on}}[1] and is seven times as massive as the outer moon, Deimos. Phobos is named after the Greek god Phobos, a son of Ares (Mars) and Aphrodite (Venus) and the personification of fear (cf. phobia).

Phobos orbits {{convert|6000|km|mi|abbr=on}} from the Martian surface, closer to its primary body than any other known planetary moon. It is so close that it orbits Mars much faster than Mars rotates, and completes an orbit in just 7 hours and 39 minutes. As a result, from the surface of Mars it appears to rise in the west, move across the sky in 4 hours and 15 minutes or less, and set in the east, twice each Martian day.

Phobos is one of the least reflective bodies in the Solar System, with an albedo of just 0.071. Surface temperatures range from about {{convert|−4|C|F}} on the sunlit side to {{convert|−112|C|F}} on the shadowed side.[17] The defining surface feature is the large impact crater, Stickney, which takes up a substantial proportion of the moon's surface. In November 2018, astronomers concluded that the many grooves on Phobos were caused by boulders ejected from the asteroid impact that created Stickney crater that rolled around on the surface of the moon.[18][19]

Images and models indicate that Phobos may be a rubble pile held together by a thin crust, and that it is being torn apart by tidal interactions.[6] Phobos gets closer to Mars by about 2 meters every one hundred years, and it is predicted that within 30 to 50 million years it will either collide with the planet, or break up into a planetary ring.[7]

Discovery

{{Main|Moons of Mars#History|l1=History of the moons of Mars}}

Phobos was discovered by astronomer Asaph Hall on 18 August 1877, at the United States Naval Observatory in Washington, D.C., at about 09:14 Greenwich Mean Time (contemporary sources, using the pre-1925 astronomical convention that began the day at noon, give the time of discovery as 17 August at 16:06 Washington mean time).[8][9][10] Hall had discovered Deimos, Mars's other moon, a few days earlier on 12 August 1877 at about 07:48 UTC. The names, originally spelled Phobus and Deimus respectively, were suggested by Henry Madan (1838–1901), Science Master of Eton, based on Greek mythology, in which Phobos is a companion to the god Ares.[11][12]

Physical characteristics

Phobos has dimensions of {{nowrap|27 km × 22 km × 18 km}},[1] and retains too little mass to be rounded under its own gravity. Phobos does not have an atmosphere due to its low mass and low gravity.[13] It is one of the least reflective bodies in the Solar System, with an albedo of about 0.071.[2] Infrared spectra show that it has carbon-rich material found in carbonaceous chondrites. Instead, its composition shows similarities to that of Mars’ surface.[14] Phobos's density is too low to be solid rock, and it is known to have significant porosity.[15][16][17] These results led to the suggestion that Phobos might contain a substantial reservoir of ice. Spectral observations indicate that the surface regolith layer lacks hydration,[18][19] but ice below the regolith is not ruled out.[20][21]

Phobos is heavily cratered.[22] The most prominent of these is the crater, Stickney, (named after Asaph Hall's wife, Angeline Stickney Hall, Stickney being her maiden name) a large impact crater some {{Convert|9|km|mi|abbr=on}} in diameter, taking up a substantial proportion of the moon's surface area. As with Mimas's crater Herschel, the impact that created Stickney must have nearly shattered Phobos.[24]

Many grooves and streaks also cover the oddly shaped surface. The grooves are typically less than {{Convert|30|m|sp=us}} deep, {{Convert|100|to|200|m|sp=us}} wide, and up to {{Convert|20|km|sp=us}} in length, and were originally assumed to have been the result of the same impact that created Stickney. Analysis of results from the Mars Express spacecraft, however, revealed that the grooves are not in fact radial to Stickney, but are centered on the leading apex of Phobos in its orbit (which is not far from Stickney). Researchers suspect that they have been excavated by material ejected into space by impacts on the surface of Mars. The grooves thus formed as crater chains, and all of them fade away as the trailing apex of Phobos is approached. They have been grouped into 12 or more families of varying age, presumably representing at least 12 Martian impact events.[25] Nonetheless, in November 2018, astronomers concluded that the many grooves on Phobos were caused by boulders, ejected from the asteroid impact that created Stickney crater, that rolled around on the surface of the moon.[26][27]

Faint dust rings produced by Phobos and Deimos have long been predicted but attempts to observe these rings have, to date, failed.[28] Recent images from Mars Global Surveyor indicate that Phobos is covered with a layer of fine-grained regolith at least 100 meters thick; it is hypothesized to have been created by impacts from other bodies, but it is not known how the material stuck to an object with almost no gravity.[29]

The unique Kaidun meteorite that fell on a Soviet military base in Yemen in 1980 has been hypothesized to be a piece of Phobos, but this has been difficult to verify because little is known about the exact composition of Phobos.[30][31]

A person who weighs {{convert|68|kg|abbr=on|0}} on Earth would weigh about {{convert|60|g|abbr=on|0}} standing on the surface of Phobos.[32]

Named geological features

Geological features on Phobos are named after astronomers who studied Phobos and people and places from Jonathan Swift's Gulliver's Travels.[33]

{{clear right}}

{{anchor|Craters on Phobos}} Craters on Phobos

A number of craters have been named, and are listed in the following table.[34]

Craters Coordinates Diameter
(km)
Approval
Year
Eponym Ref Annotated map
Clustril 60|N|91|W|globe:phobos_type:landmark|name=Clustril}}3.42006 Character in Lilliput who informed Flimnap that his wife had visited Gulliver privately in Jonathan Swift's novel Gulliver's Travels 14257}}{{PhobosCraterNames}}
D'Arrest 39|S|179|W|globe:phobos_type:landmark|name=D'Arrest}}2.11973 Heinrich Louis d'Arrest; German/Danish astronomer (1822–1875) 1696}}
Drunlo 36.5|N|92|W|globe:phobos_type:landmark|name=Drunlo}}4.22006 Character in Lilliput who informed Flimnap that his wife had visited Gulliver privately in Jonathan Swift's novel Gulliver's Travels 14258}}
Flimnap 60|N|10|E|globe:phobos_type:landmark|name=Flimnap}}1.52006 Treasurer of Lilliput in Jonathan Swift's novel Gulliver's Travels 14259}}
Grildrig 81|N|165|E|globe:phobos_type:landmark|name=Grildrig}}2.62006 Name given to Gulliver by the farmer's daughter Glumdalclitch in the giants’ country Brobdingnag in Jonathan Swift's novel Gulliver's Travels 14260}}
Gulliver 62|N|163|W|globe:phobos_type:landmark|name=Gulliver}}5.52006 Lemuel Gulliver surgeon captain and voyager in Jonathan Swift's novel Gulliver's Travels 14261}}
Hall 80|S|150|E|globe:phobos_type:landmark|name=Hall}}5.41973 Asaph Hall; American astronomer discoverer of Phobos and Deimos (1829–1907) 2328}}
Limtoc 11|S|54|W|globe:phobos_type:landmark|name=Limtoc}}22006 General in Lilliput who prepared articles of impeachment against Gulliver in Jonathan Swift's novel Gulliver's Travels 14262}}
Öpik 7|S|63|E|globe:phobos_type:landmark|name=Öpik}}22011 Ernst J. Öpik, Estonian astronomer (1893–1985) 14865}}
Reldresal 41|N|39|W|globe:phobos_type:landmark|name=Reldresal}}2.92006 Secretary for Private Affairs in Lilliput; Gulliver's friend in Jonathan Swift's novel Gulliver's Travels 14263}}
Roche 53|N|177|E|globe:phobos_type:landmark|name=Roche}}2.31973 Édouard Roche; French astronomer (1820–1883) 5167}}
Sharpless 27.5|S|154|W|globe:phobos_type:landmark|name=Sharpless}}1.81973 Bevan Sharpless; American astronomer (1904–1950) 5474}}
Shklovsky 24|N|112|E|globe:phobos_type:landmark|name=Shklovsky}}22011 Iosif Shklovsky, Soviet astronomer (1916–1985) 14866}}
Skyresh 52.5|N|40|E|globe:phobos_type:landmark|name=Skyresh}}1.52006 Skyresh Bolgolam High Admiral of the Lilliput council who opposed Gulliver's plea for freedom and accused him of being a traitor in Jonathan Swift's novel Gulliver's Travels 14264}}
Stickney 1|N|49|W|globe:phobos_type:landmark|name=Stickney}}91973 Angeline Stickney (1830–1892) ; wife of American astronomer Asaph Hall (above) 5707}}
Todd 9|S|153|W|globe:phobos_type:landmark|name=Todd}}2.61973 David Peck Todd; American astronomer (1855–1939) 6042}}
Wendell 1|S|132|W|globe:phobos_type:landmark|name=Wendell}}1.71973 Oliver Wendell; American astronomer (1845–1912) 6518}}
{{multiple image
|direction = horizontal
|align = center
|width1 = 366
|width2 = 500
|image1 = Stickney mro.jpg
|image2 = USGS-Phobos-MarsMoon-Map.png
|footer = Left: The impact crater Stickney imaged by the Mars Reconnaissance Orbiter in March 2008. The second impact crater inside Stickney is Limtoc. Right: Labeled Map of Phobos – Moon of Mars (U.S. Geological Survey).[35]
}}{{clear}}

Other named features

There is one named regio, Laputa Regio, and one named planitia, Lagado Planitia; both are named after places in Gulliver's Travels (the fictional Laputa, a flying island, and Lagado, imaginary capital of the fictional nation Balnibarbi).[36] The only named ridge on Phobos is Kepler Dorsum, named after the astronomer Johannes Kepler.

Orbital characteristics

The orbital motion of Phobos has been intensively studied, making it "the best studied natural satellite in the Solar System" in terms of orbits completed.[37] Its close orbit around Mars produces some unusual effects. With an altitude of {{convert|5989|km|abbr=on}}, Phobos orbits Mars below the synchronous orbit radius, meaning that it moves around Mars faster than Mars itself rotates.[16] Therefore, from the point of view of an observer on the surface of Mars, it rises in the west, moves comparatively rapidly across the sky (in 4 h 15 min or less) and sets in the east, approximately twice each Martian day (every 11 h 6 min). Because it is close to the surface and in an equatorial orbit, it cannot be seen above the horizon from latitudes greater than 70.4°. Its orbit is so low that its angular diameter, as seen by an observer on Mars, varies visibly with its position in the sky. Seen at the horizon, Phobos is about 0.14° wide; at zenith it is 0.20°, one-third as wide as the full Moon as seen from Earth. By comparison, the Sun has an apparent size of about 0.35° in the Martian sky. Phobos's phases, inasmuch as they can be observed from Mars, take 0.3191 days (Phobos's synodic period) to run their course, a mere 13 seconds longer than Phobos's sidereal period. As seen from Phobos, Mars would appear 6,400 times larger and 2,500 times brighter than the full Moon appears from Earth, taking up a quarter of the width of a celestial hemisphere. The Mars–Phobos Lagrangian L1 is {{Convert|2.5|km|sp=us}} above Stickney, which is unusually close to the surface.

{{clear left}}

Solar transits

{{Main|Transit of Phobos from Mars}}

An observer situated on the Martian surface, in a position to observe Phobos, would see regular transits of Phobos across the Sun. Several of these transits have been photographed by the Mars Rover Opportunity. During the transits, Phobos's shadow is cast on the surface of Mars; an event which has been photographed by several spacecraft. Phobos is not large enough to cover the Sun's disk, and so cannot cause a total eclipse.

Predicted destruction

Tidal deceleration is gradually decreasing the orbital radius of Phobos by 2 meters every one hundred years.[6] Scientists estimate that Phobos will be destroyed in approximately 30–50 million years,[6][37] with one study's estimate being about 43 million years.[38]

Phobos' grooves were long thought to be fractures caused by the impact that formed the Stickney crater. Other modelling suggested since the 1970s support the idea that the grooves are more like "stretch marks" that occur when Phobos gets deformed by tidal forces, but in 2015 when the tidal forces were calculated and used in a new model, the stresses were too weak to fracture a solid moon of that size, unless Phobos is a rubble pile surrounded by a layer of powdery regolith about {{convert|100|m|abbr=on}} thick. Stress fractures calculated for this model line up with the grooves on Phobos. The model is supported with the discovery that some of the grooves are younger than others, implying that the process that produces the grooves is ongoing.[39][40][41][6]

Given Phobos's irregular shape and assuming that it is a pile of rubble (specifically a Mohr–Coulomb body), it will eventually break up when it reaches approximately 2.1 Mars radii.[42]

When Phobos is eventually torn apart by tidal forces, a fraction of the debris will likely form a planetary ring around Mars, which may last from one million to one hundred million years.[43][44]

Origin

The origin of the Martian moons is still controversial.[45] Phobos and Deimos both have much in common with carbonaceous C-type asteroids, with spectra, albedo, and density very similar to those of C- or D-type asteroids.[46] Based on their similarity, one hypothesis is that both moons may be captured main-belt asteroids.[47][48] Both moons have very circular orbits which lie almost exactly in Mars's equatorial plane, and hence a capture origin requires a mechanism for circularizing the initially highly eccentric orbit, and adjusting its inclination into the equatorial plane, most probably by a combination of atmospheric drag and tidal forces,[49] although it is not clear that sufficient time is available for this to occur for Deimos.[45] Capture also requires dissipation of energy. The current Martian atmosphere is too thin to capture a Phobos-sized object by atmospheric braking.[45] Geoffrey A. Landis has pointed out that the capture could have occurred if the original body was a binary asteroid that separated under tidal forces.[48]

Phobos could be a second-generation Solar System object that coalesced in orbit after Mars formed, rather than forming concurrently out of the same birth cloud as Mars.[50]

Another hypothesis is that Mars was once surrounded by many Phobos- and Deimos-sized bodies, perhaps ejected into orbit around it by a collision with a large planetesimal.[51] The high porosity of the interior of Phobos (based on the density of 1.88 g/cm3, voids are estimated to comprise 25 to 35 percent of Phobos's volume) is inconsistent with an asteroidal origin.[52] Observations of Phobos in the thermal infrared suggest a composition containing mainly phyllosilicates, which are well known from the surface of Mars. The spectra are distinct from those of all classes of chondrite meteorites, again pointing away from an asteroidal origin.[53] Both sets of findings support an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit,[54] similar to the prevailing theory for the origin of Earth's moon.

{{clear}}

Shklovsky's "Hollow Phobos" hypothesis

In the late 1950s and 1960s, the unusual orbital characteristics of Phobos led to speculations that it might be hollow.

Around 1958, Russian astrophysicist Iosif Samuilovich Shklovsky, studying the secular acceleration of Phobos's orbital motion, suggested a "thin sheet metal" structure for Phobos, a suggestion which led to speculations that Phobos was of artificial origin.[55] Shklovsky based his analysis on estimates of the upper Martian atmosphere's density, and deduced that for the weak braking effect to be able to account for the secular acceleration, Phobos had to be very light—one calculation yielded a hollow iron sphere {{Convert|16|km|sp=us}} across but less than 6 cm thick.[55][56] In a February 1960 letter to the journal Astronautics,[57] Fred Singer, then science advisor to U.S. President Dwight D. Eisenhower, said of Shklovsky's theory:

If the satellite is indeed spiraling inward as deduced from astronomical observation, then there is little alternative to the hypothesis that it is hollow and therefore Martian made. The big 'if' lies in the astronomical observations; they may well be in error. Since they are based on several independent sets of measurements taken decades apart by different observers with different instruments, systematic errors may have influenced them.[57]

Subsequently, the systemic data errors that Singer predicted were found to exist, and the claim was called into doubt,[58] and accurate measurements of the orbit available by 1969 showed that the discrepancy did not exist.[59] Singer's critique was justified when earlier studies were discovered to have used an overestimated value of 5 cm/yr for the rate of altitude loss, which was later revised to 1.8 cm/yr.[60] The secular acceleration is now attributed to tidal effects,

[61]

which had not been considered in the earlier studies.

The density of Phobos has now been directly measured by spacecraft to be 1.887 g/cm3.[62] Current observations are consistent with Phobos being a rubble pile.[62] In addition, images obtained by the Viking probes in the 1970s clearly showed a natural object, not an artificial one. Nevertheless, mapping by the Mars Express probe and subsequent volume calculations do suggest the presence of voids and indicate that it is not a solid chunk of rock but a porous body.[63] The porosity of Phobos was calculated to be 30% ± 5%, or a quarter to a third being empty.[52]

Exploration

Launched missions

Phobos has been photographed in close-up by several spacecraft whose primary mission has been to photograph Mars. The first was Mariner 7 in 1969, followed by Viking 1 in 1977, Mars Global Surveyor in 1998 and 2003, Mars Express in 2004, 2008, and 2010,[64] and Mars Reconnaissance Orbiter in 2007 and 2008. On 25 August 2005, the Spirit rover, with an excess of energy due to wind blowing dust off of its solar panels, took several short-exposure photographs of the night sky from the surface of Mars.[65] Phobos and Deimos are both clearly visible in the photograph.

The Soviet Union undertook the Phobos program with two probes, both launched successfully in July 1988. Phobos 1 was accidentally shut down by an erroneous command from ground control issued in September 1988 and lost while the craft was still en route. Phobos 2 arrived at the Mars system in January 1989 and, after transmitting a small amount of data and imagery but shortly before beginning its detailed examination of Phobos's surface, the probe abruptly ceased transmission due either to failure of the on-board computer or of the radio transmitter, already operating on the backup power. Other Mars missions collected more data, but the next dedicated mission attempt would be a sample return mission.

The Russian Space Agency launched a sample return mission to Phobos in November 2011, called Fobos-Grunt. The return capsule also included a life science experiment of The Planetary Society, called Living Interplanetary Flight Experiment, or LIFE.[66] A second contributor to this mission was the China National Space Administration, which supplied a surveying satellite called "Yinghuo-1", which would have been released in the orbit of Mars, and a soil-grinding and sieving system for the scientific payload of the Phobos lander.[67][68][69] However, after achieving Earth orbit, the Fobos–Grunt probe failed to initiate subsequent burns that would have sent it off to Mars. Attempts to recover the probe were unsuccessful and it crashed back to Earth in January 2012.[70]

Missions considered

In 1997 and 1998, the Aladdin mission was selected as a finalist in the NASA Discovery Program. The plan was to visit both Phobos and Deimos, and launch projectiles at the satellites. The probe would collect the ejecta as it performed a slow flyby (~1 km/s).[72] These samples would be returned to Earth for study three years later.[73][74] The Principal Investigator was Dr. Carle Pieters of Brown University. The total mission cost, including launch vehicle and operations was $247.7 million.[75] Ultimately, the mission chosen to fly was MESSENGER, a probe to Mercury.[76]

In 2007, the European aerospace subsidiary EADS Astrium was reported to have been developing a mission to Phobos as a technology demonstrator. Astrium was involved in developing a European Space Agency plan for a sample return mission to Mars, as part of the ESA's Aurora programme, and sending a mission to Phobos with its low gravity was seen as a good opportunity for testing and proving the technologies required for an eventual sample return mission to Mars. The mission was envisioned to start in 2016, was to last for three years. The company planned to use a "mothership", which would be propelled by an ion engine, releasing a lander to the surface of Phobos. The lander would perform some tests and experiments, gather samples in a capsule, then return to the mothership and head back to Earth where the samples would be jettisoned for recovery on the surface.[77]

Proposed missions

In 2007, the Canadian Space Agency funded a study by Optech and the Mars Institute for an unmanned mission to Phobos known as Phobos Reconnaissance and International Mars Exploration (PRIME). A proposed landing site for the PRIME spacecraft is at the "Phobos monolith", a prominent object near Stickney crater.[78][79][80] The PRIME mission would be composed of an orbiter and lander, and each would carry 4 instruments designed to study various aspects of Phobos's geology.[81]

In 2008, NASA Glenn Research Center began studying a Phobos and Deimos sample return mission that would use solar electric propulsion. The study gave rise to the "Hall" mission concept, a New Frontiers-class mission under further study as of 2010.[82]

Another concept of a sample return mission from Phobos and Deimos is OSIRIS-REx II, which would use heritage technology from the first OSIRIS-REx mission.[83]

As of January 2013, a new Phobos Surveyor mission is currently under development by a collaboration of Stanford University, NASA's Jet Propulsion Laboratory, and the Massachusetts Institute of Technology.[84] The mission is currently in the testing phases, and the team at Stanford plans to launch the mission between 2023 and 2033.[84]

In March 2014, a Discovery class mission was proposed to place an orbiter in Mars orbit by 2021 to study Phobos and Deimos through a series of close flybys. The mission is called Phobos And Deimos & Mars Environment (PADME).[85][86][87] Two other Phobos missions that were proposed for the Discovery 13 selection included a mission called Merlin, which would flyby Deimos but actually orbit and land on Phobos, and another one is Pandora which would orbit both Deimos and Phobos.[88]

The Japanese Aerospace Exploration Agency (JAXA) unveiled in 9 June 2015 the Martian Moons Exploration (MMX), a sample return mission targeting Phobos.[89] MMX will land and collect samples from Phobos multiple times, along with conducting Deimos flyby observations and monitoring Mars's climate. By using a corer sampling mechanism, the spacecraft aims to retrieve a minimum 10 g amount of samples.[90] NASA, ESA, and CNES[91] are also participating in the project, and will provide scientific instruments.[92][93] The U.S. will contribute the Neutron and Gamma-Ray

Spectrometer (NGRS), and France the Near IR Spectrometer (NIRS4/MacrOmega).[90][94] Although the mission has been selected for implementation[95][96] and is now beyond proposal stage, formal project approval by JAXA has been postponed following the Hitomi mishap.[97] Development and testing of key components, including the sampler, is currently ongoing.[98] As of 2017, MMX is scheduled to be launched in 2024, and will return to Earth five years later.[90]

Russia plans to repeat Fobos-Grunt mission in the late 2020s, and the European Space Agency is assessing a sample-return mission for 2024 called Phootprint.[99][100]

As part of a human mission to Mars

Phobos has been proposed as an early target for a human mission to Mars. The teleoperation of robotic scouts on Mars by humans on Phobos could be conducted without significant time delay, and planetary protection concerns in early Mars exploration might be addressed by such an approach.[102]

Phobos has also been proposed as an early target for a manned mission to Mars because a landing on Phobos would be considerably less difficult and expensive than a landing on the surface of Mars itself. A lander bound for Mars would need to be capable of atmospheric entry and subsequent return to orbit, without any support facilities (a capacity that has never been attempted in a manned spacecraft), or would require the creation of support facilities in-situ (a "colony or bust" mission); a lander intended for Phobos could be based on equipment designed for lunar and asteroid landings.[103] Additionally, the delta-v to land on Phobos and return is only 80% of that for a trip to and from the surface of the Moon, partly due to Phobos's very weak gravity.[104]{{Full citation needed |date=July 2015 }}

The human exploration of Phobos could serve as a catalyst for the human exploration of Mars and be exciting and scientifically valuable in its own right.[105]

Most recently, it was proposed that the sands of Phobos could serve as a valuable material for aerobraking in the colonization of Mars.[106][107] Because the small delta-v budget of Phobos, a small amount of chemical fuel brought from Earth could be transformed in a very large amount of sand lifted from the surface of Phobos -from a permanent outpost, to a transfer orbit. This sand could be released in front of the spacecraft during the descent maneuver and then resulting in a densification of the atmosphere just in front of the spacecraft.

See also

{{Portal|Astronomy}}
  • List of natural satellites
  • List of missions to the moons of Mars
  • Phobos and Deimos in fiction
  • Transit of Phobos from Mars

References

1. ^10 11 12 {{cite web |date=30 September 2003 |title=Mars: Moons: Phobos |publisher=NASA Solar System Exploration |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos&Display=Facts |accessdate=2 December 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20131019162634/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos&Display=Facts |archivedate=19 October 2013 }}
2. ^{{cite web |url=http://ssd.jpl.nasa.gov/?sat_phys_par |publisher=JPL (Solar System Dynamics) |title=Planetary Satellite Physical Parameters |date=13 July 2006 |accessdate=29 January 2008 }}
3. ^{{Cite web | url=http://jtg.sjrdesign.net/advanced/mars_moons.html | title=Mars' Moons}}
4. ^{{Cite web | url=http://www.oxforddictionaries.com/us/definition/english/phobos?q=Phobos | title=Phobos | Definition of Phobos in English by Oxford Dictionaries}}
5. ^{{cite web |title=Mar's moon Phobos |url=http://mars.nasa.gov/allaboutmars/extreme/moons/phobos/ |website=NASA |publisher=NASA |accessdate=16 July 2016 }}
6. ^{{cite news |url=http://spaceref.com/mars/phobos-is-slowly-falling-apart.html |title=Phobos is Slowly Falling Apart |work=NASA |publisher=SpaceRef |date=10 November 2015 |accessdate=2015-11-11 }}
7. ^{{cite web |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos |title=NASA – Phobos |publisher=Solarsystem.nasa.gov |accessdate=4 August 2014 |deadurl=yes |archiveurl=https://web.archive.org/web/20140624191709/https://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos |archivedate=24 June 2014 }}
8. ^{{Cite journal |url=http://adsabs.harvard.edu//full/seri/Obs../0001//0000181.000.html |title=Notes: The Satellites of Mars |journal=The Observatory |volume=1 |issue=6 |date=20 September 1877 |pages=181–185 |accessdate=4 February 2009 |bibcode = 1877Obs.....1..181. }}
9. ^{{Cite journal |url=http://adsabs.harvard.edu//full/seri/AN.../0091//0000013.000.html |title=Observations of the Satellites of Mars |last=Hall |first=Asaph |journal=Astronomische Nachrichten |volume=91 |issue=2161 |pages=11/12–13/14 |date=17 October 1877 |type=Signed 21 September 1877 |bibcode = 1877AN.....91...11H |doi=10.1002/asna.18780910103 }}
10. ^{{Cite journal |last=Morley |first=Trevor A. |url=http://adsabs.harvard.edu//full/seri/A+AS./0077//0000220.000.html |title=A Catalogue of Ground-Based Astrometric Observations of the Martian Satellites, 1877–1982 |journal=Astronomy and Astrophysics Supplement Series |volume=77 |issue=2 |date=February 1989 |pages=209–226 |bibcode=1989A&AS...77..209M }} (Table II, p. 220: first observation of Phobos on 18 August 1877.38498)
11. ^{{Cite journal |last=Madan |first=Henry George |url=https://books.google.com/?id=fC4CAAAAYAAJ&pg=RA4-PA475&lpg=RA4-PA475 |journal=Nature |volume=16 |issue=414 |title=Letters to the Editor: The Satellites of Mars |date=4 October 1877 |type=Signed 29 September 1877 |page=475 |doi=10.1038/016475b0 |bibcode=1877Natur..16R.475M }}
12. ^{{Cite journal |last=Hall |first=Asaph |url=http://adsabs.harvard.edu//full/seri/AN.../0092//0000031.000.html |journal=Astronomische Nachrichten |volume=92 |issue=2187 |title=Names of the Satellites of Mars |date=14 March 1878 |type=Signed 7 February 1878 |pages=47–48 |doi=10.1002/asna.18780920304 |bibcode=1878AN.....92...47H }}
13. ^{{cite web |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos |title=Solar System Exploration: Planets: Mars: Moons: Phobos: Overview |publisher=Solarsystem.nasa.gov |accessdate=19 August 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20140624191709/https://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos |archivedate=24 June 2014 }}
14. ^Citron, R. I.; Genda, H.; & Ida, S. (2015), "Formation of Phobos and Deimos via a giant impact", Icarus, 252, p. 334-338, doi:10.1016/j.icarus.2015.02.011
15. ^{{cite web |title=Porosity of Small Bodies and a Reassesment of Ida's Density |url=http://www.aas.org/publications/baas/v31n4/dps99/65.htm |quote=When the error bars are taken into account, only one of these, Phobos, has a porosity below 0.2... |deadurl=yes |archiveurl=https://web.archive.org/web/20070926224539/http://www.aas.org/publications/baas/v31n4/dps99/65.htm |archivedate=26 September 2007 }}
16. ^{{cite web |title=Close Inspection for Phobos |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31031 |quote=It is light, with a density less than twice that of water, and orbits just {{Convert|5989|km|sp=us}} above the Martian surface. }}
17. ^{{Cite journal |last=Busch |first=Michael W. |display-authors=4 |last2=Ostro |first2=Steven J. |last3=Benner |first3=Lance A. M. |last4=Giorgini |first4=Jon D. |last5=Magri |first5=Christopher |last6=Howell |first6=Ellen S. |last7=Nolan |first7=Michael C. |last8=Hine |first8=Alice A. |last9=Campbell |first9=Donald B. |last10=Shapiro |first10=Irwin I. |last11=Chandler |first11=John F. |date=2007 |title=Arecibo Radar Observations of Phobos and Deimos |journal=Icarus |volume=186 |issue=2 |pages=581–584 |doi=10.1016/j.icarus.2006.11.003 |bibcode=2007Icar..186..581B }}
18. ^{{Cite journal |last=Murchie |first=Scott L. |display-authors=4 |last2=Erard |first2=Stephane |last3=Langevin |first3=Yves |last4=Britt |first4=Daniel T. |last5=Bibring |first5=Jean-Pierre |last6=Mustard |first6=John F. |last7=Head |first7=James W. |last8=Pieters |first8=Carle M. |title=Disk-resolved Spectral Reflectance Properties of Phobos from 0.3–3.2 microns: Preliminary Integrated Results from PhobosH 2 |journal=Abstracts of the Lunar and Planetary Science Conference |volume=22 |page=943 |date=1991 |bibcode=1991pggp.rept..249M }}
19. ^{{Cite journal |last=Rivkin |first=Andrew S. |display-authors=4 |last2=Brown |first2=Robert H. |last3=Trilling |first3=David E. |last4=Bell III |first4=James F. |last5=Plassmann |first5=Joseph (Joe) H. |date=March 2002 |title=Near-Infrared Spectrophotometry of Phobos and Deimos |journal=Icarus |volume=156 |issue=1 |pages=64–75 |bibcode=2002Icar..156...64R |doi=10.1006/icar.2001.6767 }}
20. ^{{cite journal |last1=Fanale |first1=Fraser P. |first2=James R. |last2=Salvail |date=1989 |title=Loss of water from Phobos |journal=Geophys. Res. Lett. |volume=16 |number=4 |pages=287–290 |doi=10.1029/GL016i004p00287 |bibcode=1989GeoRL..16..287F }}
21. ^{{cite journal |title=Evolution of the water regime of Phobos |first1=Fraser P. |last1=Fanale |first2=James R. |last2=Salvail |doi = 10.1016/0019-1035(90)90089-R |date=Dec 1990 |journal=Icarus |volume=88 |issue=2 |pages=380–395 |bibcode=1990Icar...88..380F }}
22. ^{{cite web |title=Phobos |url=http://www.bbc.co.uk/science/space/solarsystem/mars/phobos.shtml }}
23. ^{{Cite news |date=21 October 1976 |title=Viking looks at Phobos in detail |newspaper=New Scientist |page=158 }}
24. ^{{cite web |title=Stickney Crater-Phobos |url=http://www.solarviews.com/cap/mars/phobos2.htm |quote=One of the most striking features of Phobos, aside from its irregular shape, is its giant crater Stickney. Because Phobos is only {{Convert|28|by|20|km||sp=us}}, it must have been nearly shattered from the force of the impact that caused the giant crater. Grooves that extend across the surface from Stickney appear to be surface fractures caused by the impact. }}
25. ^{{cite web |title=New Evidence on the Origin of Phobos' Parallel Grooves from HRSC Mars Express |last=Murray |first=John B. |display-authors=4 |first2=John B. |last2=Murray |first3=Jonathan C. |last3=Iliffe |first4=Jan-Peter A. L. |last4=Muller |first5=Gerhard |last5=Neukum |first6=Stephanie |last6=Werner |first7=Matt |last7=Balme |last8=HRSC Co-Investigator Team |publisher=37th Annual Lunar and Planetary Science Conference, March 2006 |url=http://www.lpi.usra.edu/meetings/lpsc2006/pdf/2195.pdf }}
26. ^{{cite web |last=Gough |first=Evan |title=Strange Grooves on Phobos Were Caused by Boulders Rolling Around on its Surface |url=https://www.universetoday.com/140593/strange-grooves-on-phobos-were-caused-by-boulders-rolling-around-on-its-surface/ |date=20 November 2018 |work=Universe Today |accessdate=21 November 2018 }}
27. ^{{cite journal |last1=Ramsley |first1=Kenneth R. |last2=Head |first2=James W. |title=Origin of Phobos grooves: Testing the Stickney Crater ejecta model |date=16 November 2018 |journal=Planetary and Space Science |volume=165 |pages=137–147 |doi=10.1016/j.pss.2018.11.004 }}
28. ^{{Cite journal |doi=10.1016/j.pss.2006.05.009 |last=Showalter |first=Mark R. |last2=Hamilton |first2=Douglas P. |last3=Nicholson |first3=Philip D. |title=A Deep Search for Martian Dust Rings and Inner Moons Using the Hubble Space Telescope |journal=Planetary and Space Science |volume=54 |date=2006 |issue=9–10 |pages=844–854 |url=http://www.astro.umd.edu/~hamilton/research/reprints/ShoHamNic06.pdf |bibcode=2006P&SS...54..844S }}
29. ^{{cite web |last=Britt |first=Robert Roy |title=Forgotten Moons: Phobos and Deimos Eat Mars' Dust |url=http://www.space.com/scienceastronomy/forgotten_moons_010313-3.html |publisher=space.com |date=13 March 2001 |accessdate=12 May 2010 }}
30. ^{{Cite journal |last=Ivanov |first=Andrei V. |bibcode=2004SoSyR..38...97I |title=Is the Kaidun Meteorite a Sample from Phobos? |date=March 2004 |journal=Solar System Research |volume=38 |issue=2 |pages=97–107 |doi=10.1023/B:SOLS.0000022821.22821.84 }}
31. ^{{Cite journal |last=Ivanov |first=Andrei |first2=Michael |last2=Zolensky |title=The Kaidun Meteorite: Where Did It Come From? |url=http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1236.pdf |journal=Lunar and Planetary Science |date=2003 |volume=34 |quote=The currently available data on the lithologic composition of the Kaidun meteorite– primarily the composition of the main portion of the meteorite, corresponding to CR2 carbonaceous chondrites and the presence of clasts of deeply differentiated rock – provide weighty support for considering the meteorite’s parent body to be a carbonaceous chondrite satellite of a large differentiated planet. The only possible candidates in the modern Solar System are Phobos and Deimos, the moons of Mars. }}
32. ^{{Cite web |url=http://www.space.com/20346-phobos-moon.html |title=Phobos: Facts About the Doomed Martian Moon |access-date=2016-07-17 }}
33. ^Gazetteer of Planetary Nomenclature USGS Astrogeology Research Program, Categories
34. ^Gazetteer of Planetary Nomenclature USGS Astrogeology Research Program, Craters
35. ^{{cite web |author=USGS Staff |title=Phobos Map – Shaded Relief |url=http://planetarynames.wr.usgs.gov/images/phobos-cylindrical-grid.pdf |work=USGS |accessdate=18 August 2013 }}
36. ^Gazetteer of Planetary Nomenclature USGS Astrogeology Research Program, Phobos
37. ^{{cite journal |last=Bills |first=Bruce G. |first2=Gregory A. |last2=Neumann |first3=David E. |last3=Smith |first4=Maria T. |last4=Zuber |date=2005 |title=Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos |journal=Journal of Geophysical Research |volume=110 |issue=E07004 |pages=E07004 |url=http://www-geodyn.mit.edu/bills_phobos05.pdf |doi=10.1029/2004je002376 |bibcode=2005JGRE..110.7004B }}
38. ^{{Cite journal |last=Efroimsky |first=Michael |last2=Lainey |first2=Valéry |title=Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. |date=2007 |journal=Journal of Geophysical Research |volume=112 |number=E12 |page=E12003 |doi=10.1029/2007JE002908 |arxiv=0709.1995 |bibcode=2007JGRE..11212003E }}
39. ^{{Cite web |url=http://spaceref.com/mars/phobos-is-slowly-falling-apart.html |title=Phobos is Slowly Falling Apart—SpaceRef |website=spaceref.com |access-date=17 July 2016 }}
40. ^Hurford, Terry A.; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; et al.; "Surface Evolution from Orbital Decay on Phobos", Division of Planetary Sciences of the American Astronomical Society meeting #47, National Harbor, MD, November 2015
41. ^{{Cite web |url=https://www.sciencedaily.com/releases/2015/11/151110171214.htm |title=Mars' moon Phobos is slowly falling apart |website=www.sciencedaily.com |access-date=17 July 2016 }}
42. ^{{Cite journal |first=Keith A. |last=Holsapple |date=December 2001 |title=Equilibrium Configurations of Solid Cohesionless Bodies |journal=Icarus |volume=154 |issue=2 |pages=432–448 |doi=10.1006/icar.2001.6683 |bibcode=2001Icar..154..432H }}
43. ^{{Cite web |url=https://www.theguardian.com/science/2015/nov/23/gravity-will-rip-mars-moon-apart-dust-rubble-ring |title=Gravity will rip Martian moon apart to form dust and rubble ring |last=Sample |first=Ian |date=23 November 2015 |website=the Guardian |access-date=17 July 2016 }}
44. ^Black, Benjamin A.; and Mittal, Tushar; (2015), "The demise of Phobos and development of a Martian ring system", Nature Geosci, advance online publication, doi:10.1038/ngeo2583
45. ^Burns, Joseph A.; "Contradictory Clues as to the Origin of the Martian Moons" in Mars, H. H. Kieffer et al., eds., University of Arizona Press, Tucson, AZ, 1992
46. ^{{cite web |url=http://www.physorg.com/news115483748.html |title=New Views of Martian Moons }}
47. ^{{cite web |title=Close Inspection for Phobos |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31031 |quote=One idea is that Phobos and Deimos, Mars's other moon, are captured asteroids. }}
48. ^Landis, Geoffrey A.; "Origin of Martian Moons from Binary Asteroid Dissociation", American Association for the Advancement of Science Annual Meeting; Boston, MA, 2001, [https://ntrs.nasa.gov/search.jsp?R=946501&id=8&qs=No%3D70&N%3D4294808501 abstract]
49. ^{{Cite journal |last=Cazenave |first=Anny |last2=Dobrovolskis |first2=Anthony R. |last3=Lago |first3=Bernard |date=1980 |title=Orbital history of the Martian satellites with inferences on their origin |journal=Icarus |volume=44 |issue=3 |pages=730–744 |doi=10.1016/0019-1035(80)90140-2 |bibcode=1980Icar...44..730C }}
50. ^{{cite web |date=4 March 2010 |title=Phobos Flyby Success |publisher=ESA |first=Martin |last=Pätzold |first2=Olivier |last2=Witasse |last-author-amp=yes |url=http://www.esa.int/esaSC/SEMIPX6K56G_index_0.html |accessdate=4 March 2010 }}
51. ^Craddock, Robert A.; (1994); "The Origin of Phobos and Deimos", Abstracts of the 25th Annual Lunar and Planetary Science Conference, held in Houston, TX, 14–18 March 1994, p. 293
52. ^{{Cite journal |last=Andert |first=Thomas P. |display-authors=4 |last2=Rosenblatt |first2=Pascal |last3=Pätzold |first3=Martin |last4=Häusler |first4=Bernd |last5=Dehant |first5=Véronique M. |last6=Tyler |first6=George Leonard |last7=Marty |first7=Jean-Charles |title=Precise mass determination and the nature of Phobos |journal=Geophysical Research Letters |volume=37 |issue=9 |pages=L09202 |date = 7 May 2010 |doi=10.1029/2009GL041829 |bibcode=2010GeoRL..37.9202A }}
53. ^{{Cite conference |first=Marco |last=Giuranna |display-authors=4 |last2=Roush |first2=Ted L. |last3=Duxbury |first3=Thomas |last4=Hogan |first4=Robert C. |last5=Geminale |first5=Anna |last6=Formisano |first6=Vittorio |title=Compositional Interpretation of PFS/MEx and TES/MGS Thermal Infrared Spectra of Phobos |booktitle=European Planetary Science Congress Abstracts, Vol. 5 |date=2010 |url=http://meetingorganizer.copernicus.org/EPSC2010/EPSC2010-211.pdf |accessdate=1 October 2010 }}
54. ^{{cite web |title=Mars Moon Phobos Likely Forged by Catastrophic Blast |publisher=Space.com |date=27 September 2010 |url=http://www.space.com/scienceastronomy/martian-moon-forged-by-catastrophic-blast-100927.html |accessdate=1 October 2010 }}
55. ^Shklovsky, Iosif Samuilovich; The Universe, Life, and Mind, Academy of Sciences USSR, Moscow, 1962
56. ^{{Cite journal |last=Öpik |first=Ernst Julius |authorlink=Ernst Julius Öpik |bibcode=1964IrAJ....6..281. |journal=Irish Astronomical Journal |volume=6 |pages=281–283 |title=Is Phobos Artificial? |date=September 1964 }}
57. ^Singer, S. Fred; Astronautics, February 1960
58. ^{{Cite journal |last=Öpik |first=Ernst Julius |bibcode=1963IrAJ....6R..40. |journal=Irish Astronomical Journal |volume=6 |page=40 |date=March 1963 |title=News and Comments: Phobos, Nature of Acceleration }}
59. ^{{Citation |last=Singer |first=S. Fred |bibcode=1967mopl.conf..317S |title=On the Origin of the Martian Satellites Phobos and Deimos |journal=The Moon and The Planets |pages=317 |date=1967 }}
60. ^Singer, S. Fred; "More on the Moons of Mars", Astronautics, February 1960. American Astronautical Society, page 16
61. ^{{cite news |last=Efroimsky |first=Michael |last2=Lainey |first2=Valéry |title=Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution |date=29 December 2007 |work=Journal of Geophysical Research—Planets, Vol. 112, p. E12003 |doi=10.1029/2007JE002908 }}
62. ^{{cite web |url=http://www.dlr.de/mars/en/desktopdefault.aspx/tabid-207/422_read-13776/ |publisher=DLR |title=Mars Express closes in on the origin of Mars' larger moon |date=16 October 2008 |accessdate=16 October 2008 }}
63. ^Clark, Stuart; "Cheap Flights to Phobos" in New Scientist magazine, 30 January 2010
64. ^{{Cite news |url=http://news.bbc.co.uk/2/hi/science/nature/8550362.stm |accessdate=7 March 2010 |title=Closest Phobos flyby gathers data |date=4 March 2010 |location=London |work=BBC News }}
65. ^{{cite web |title=Two Moons Passing in the Night |url=http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20050909a.html |publisher=NASA |accessdate=27 June 2011 }}
66. ^{{cite web |url=http://www.planetary.org/programs/projects/life/ |title=Projects LIFE Experiment: Phobos |publisher=The Planetary Society |accessdate=12 May 2010 }}
67. ^{{cite web |url=http://en.rian.ru/world/20060911/53726392.html |date=11 September 2006 |title=Russia, China Could Sign Moon Exploration Pact in 2006 |publisher=RIA Novosti |accessdate=12 May 2010 }}
68. ^{{cite web |url=http://www.hktrader.net/200705/lead/lead-SpaceMission200705.htm |title=HK triumphs with out of this world invention |publisher=Hong Kong Trader |date=1 May 2007 |accessdate=12 May 2010 }}
69. ^{{cite web |url=https://www.polyu.edu.hk/web/en/media/media_releases/index_id_815.html |title=PolyU-made space tool sets for Mars again |publisher=Hong Kong Polytechnic University |date=2 April 2007 |accessdate=23 January 2018 }}
70. ^[https://www.bbc.co.uk/news/science-environment-16491457 "Russia's failed Phobos-Grunt space probe heads to Earth"], BBC News, 14 January 2012
71. ^{{cite web |url=http://spaceflight.nasa.gov/gallery/images/exploration/marsexploration/html/s86_25375.html |title=S86-25375 (1986) |publisher=Spaceflight.nasa.gov |accessdate=4 August 2014 }}
72. ^{{cite book |last=Barnouin-Jha |first=Olivier S. |chapter-url=http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=794346&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D794346 |work=Aerospace Conference, 1999. Proceedings. 1999 IEEE |publisher=Aerospace Conference, 1999. Proceedings. 1999 IEEE |accessdate=28 March 2013 |doi=10.1109/AERO.1999.794346 |title=1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403) |volume=1 |pages=403–412 vol.1 |year=1999 |isbn=978-0-7803-5425-8 |chapter=Aladdin: Sample return from the moons of Mars }}
73. ^{{cite web |last=Pieters |first=Carle |title=Aladdin: Phobos -Deimos Sample Return |url=http://www.lpi.usra.edu/meetings/lpsc97/pdf/1113.PDF |work=28th Annual Lunar and Planetary Science Conference |publisher=28th Annual Lunar and Planetary Science Conference |accessdate=28 March 2013 }}
74. ^{{cite web |title=Messenger and Aladdin Missions Selected as NASA Discovery Program Candidates |url=http://www.jhuapl.edu/newscenter/pressreleases/1998/managed.asp |accessdate=28 March 2013 }}
75. ^{{cite web |title=Five Discovery mission proposals selected for feasiblilty studies |url=http://nssdc.gsfc.nasa.gov/planetary/text/discovery_pr_19981112.txt |accessdate=28 March 2013 }}
76. ^{{cite web |title=NASA Selects Missions to Mercury and a Comet's Interior as Next Discovery Flights |url=http://nssdc.gsfc.nasa.gov/planetary/news/discovery_pr_19990707.html |accessdate=28 March 2013 }}
77. ^Amos, Jonathan; Martian Moon ’Could be Key Test’, BBC News (9 February 2007)
78. ^Optech press release, "Canadian Mission Concept to Mysterious Mars moon Phobos to Feature Unique Rock-Dock Maneuver", 3 May 2007
79. ^PRIME: Phobos Reconnaissance & International Mars Exploration {{webarchive|url=https://web.archive.org/web/20070724075929/http://www.marsinstitute.info/docs/PRIME.Poster.061018.pdf |date=24 July 2007 }}, Mars Institute website, accessed 27 July 2009.
80. ^Lee, Pascal; Richards, Robert; Hildebrand, Alan; and the PRIME Mission Team 2008, "The PRIME (Phobos Reconnaissance and International Mars Exploration) Mission and Mars sample Return", in 39th Lunar Planetary Science Conference, Houston, TX, March 2008, [#2268]|http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2268.pdf
81. ^{{Cite news |first=Leslie |last=Mullen |title=New Missions Target Mars Moon Phobos |date=30 April 2009 |publisher=Space.com |url=http://www.space.com/scienceastronomy/090430-mars-phobos-missions.html|work=Astrobiology Magazine |accessdate=5 September 2009 }}
82. ^Lee, Pascal; Veverka, Joseph F.; Bellerose, Julie; Boucher, Marc; et al.; 2010; "Hall: A Phobos and Deimos Sample Return Mission", 44th Lunar Planetary Science Conference, The Woodlands, TX. 1–5 Mar 2010. [#1633] {{bibcode|2010LPI....41.1633L }}.
83. ^Elifritz, Thomas Lee; (2012); OSIRIS-REx II to Mars. (PDF)
84. ^{{cite news |url=http://news.stanford.edu/news/2012/december/rover-mars-phobos-122812.html |title=Stanford researchers develop acrobatic space rovers to explore moons and asteroids |work=Stanford Report |date=28 December 2012 |agency=Stanford News Service |accessdate=3 January 2013 |last=Pandika |first=Melissa |location=Stanford, CA }}
85. ^{{cite conference |last=Lee |first=Pascal |last2=Bicay |first2=Michael |last3=Colapre |first3=Anthony |last4=Elphic |first4=Richard |title=Phobos And Deimos & Mars Environment (PADME): A LADEE-Derived Mission to Explore Mars's Moons and the Martian Orbital Environment |url=http://www.hou.usra.edu/meetings/lpsc2014/pdf/2288.pdf |format=PDF |conference=45th Lunar and Planetary Science Conference (2014) |conferenceurl=http://www.hou.usra.edu/meetings/lpsc2014/ |date=17–21 March 2014 }}
86. ^{{cite news |last=Reyes |first=Tim |url=http://www.universetoday.com/114871/making-the-case-for-a-mission-to-the-martian-moon-phobos/ |title=Making the Case for a Mission to the Martian Moon Phobos |work=Universe Today |date=1 October 2014 |accessdate=5 October 2014 }}
87. ^{{cite conference |last=Lee |first=Pascal |last2=Benna |first2=Mehdi |last3=Britt |first3=Daniel T. |last4=Colaprete |first4=Anthony |title=PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars |url=http://www.hou.usra.edu/meetings/lpsc2015/pdf/2856.pdf |format=PDF |conference=46th Lunar and Planetary Science Conference (2015) |conferenceurl=http://www.hou.usra.edu/meetings/lpsc2015/ |date=16–20 March 2015 }}
88. ^MERLIN: The Creative Choices Behind a Proposal to Explore the Martian Moons (Merlin and PADME info also)
89. ^{{cite news |url=http://www.japantimes.co.jp/news/2015/06/10/national/science-health/jaxa-plans-probe-bring-back-samples-martian-moons/ |title=JAXA plans probe to bring back samples from moons of Mars |date=10 June 2015 |newspaper=The Japan Times Online }}
90. ^{{cite web |url=http://www.lpi.usra.edu/sbag/meetings/jan2017/presentations/Fujimoto.pdf |title=JAXA's exploration of the two moons of Mars, with sample return from Phobos |last1=Fujimoto |first1=Masaki |publisher=Lunar and Planetary Institute |date=11 January 2017 |accessdate=23 March 2017 }}
91. ^{{cite press release |title=Coopération spatiale entre la France et le Japon Rencontre à Paris entre le CNES et la JAXA-ISAS |url=https://presse.cnes.fr/sites/default/files/drupal/201702/default/cp025-2017_-_japon.pdf |publisher=CNES |date=10 February 2017 |access-date=23 March 2017 |language=French }}
92. ^{{cite web |url=http://www.isas.jaxa.jp/outreach/isas_news/files/ISASnews430.pdf |title=ISASニュース 2017.1 No.430 |publisher=Institute of Space and Astronautical Science |date=22 January 2017 |access-date=23 March 2016 |language=Japanese }}
93. ^{{cite web |url=http://www.lpi.usra.edu/pss/jun2016/presentations/Green.pdf#page=22 |title=Planetary Science Division Status Report |last1=Green |first1=James |publisher=Lunar and Planetary Institute |format=PDF |date=7 June 2016 |accessdate=23 March 2017 }}
94. ^{{cite web |url=http://www.lpi.usra.edu/meetings/lpsc2017/pdf/2813.pdf |title=A Study of Near-Infrared Hyperspectral Imaging of Martian Moons by NIRS4/MACROMEGA onboard MMX Spacecraft |publisher=Lunar and Planetary Institute |date=23 March 2017 |accessdate=23 March 2017 }}
95. ^{{cite web |url= https://www.cosmos.esa.int/documents/653713/1049906/08+Yamamoto20160610.ppt/1d540dc8-5053-4732-8af1-db6be0c5ae4e |title=Observation plan for Martian meteors by Mars-orbiting MMX spacecraft |format=PowerPoint |date=10 June 2016 |accessdate=23 March 2017 }}
96. ^{{cite news |date=4 July 2016 |title=A giant impact: Solving the mystery of how Mars' moons formed |url=https://www.sciencedaily.com/releases/2016/07/160704144236.htm |newspaper=ScienceDaily |accessdate=23 March 2017 }}
97. ^{{cite web |url=https://www.slideshare.net/ISAS_Director_Tsuneta/jaxa-space-science-program-and-international-collaboration-69619024 |title=JAXA Space Science Program and International Cooperation |last1=Tsuneta |first1=Saku |date=10 June 2016 |access-date=23 March 2017 }}
98. ^{{cite web |url=http://www.isas.jaxa.jp/outreach/isas_news/files/ISASnews424.pdf#page=6 |title=ISASニュース 2016.7 No.424 |publisher=Institute of Space and Astronautical Science |format=PDF |date=22 July 2016 |access-date=23 March 2017 |language=Japanese }}
99. ^{{cite conference |last=Barraclough |first=Simon |last2=Ratcliffe |first2=Andrew |last3=Buchwald |first3=Robert |last4=Scheer |first4=Heloise |last5=Chapuy |first5=Marc | last6=Garland |first6=Martin |title=Phootprint: A European Phobos Sample Return Mission |url=http://solarsystem.nasa.gov/docs/03_Phootprint_A%20European%20Phobos%20Sample%20Return%20Mission_Ratcliffe.pdf |format=PDF |conference=11th International Planetary Probe Workshop |publisher=Airbus Defense and Space |date=16 June 2014 }}
100. ^{{cite journal |bibcode=2014cosp...40E1592K |title=Phootprint – A Phobos sample return mission study |last=Koschny |first=Detlef |last2=Svedhem |first2=Håkan |first3=Denis |last3=Rebuffat |journal=ESA |volume=40 |pages=B0.4–9–14 |date=2 August 2014 }}
101. ^{{cite web |url=http://www.jpl.nasa.gov/releases/98/mgsphobos.html |title=Martian moon Phobos hip-deep in powder |publisher=Jpl.nasa.gov |date=11 September 1998 |accessdate=4 May 2014 }}
102. ^Landis, Geoffrey A.; "Footsteps to Mars: an Incremental Approach to Mars Exploration", in Journal of the British Interplanetary Society, vol. 48, pp. 367–342 (1995); presented at Case for Mars V, Boulder CO, 26–29 May 1993; appears in From Imagination to Reality: Mars Exploration Studies, R. Zubrin, ed., AAS Science and Technology Series Volume 91, pp. 339–350 (1997). (text available as Footsteps to Mars (PDF)
103. ^Lee, Pascal; Braham, Stephen; Mungas, Greg; Silver, Matt; Thomas, Peter C.; and West, Michael D. (2005), "Phobos: A Critical Link Between Moon and Mars Exploration", Report of the Space Resources Rountable VII: LEAG Conference on Lunar Exploration, League City, TX 25–28 Oct 2005. LPI Contrib. 1318, p. 72. {{bibcode|2005LPICo1287...56L }}
104. ^{{cite web |url=http://discover.coverleaf.com/discovermagazine/200906/?pg=4#pg4 |title=Discover – June 2009 |publisher=Discover.coverleaf.com |date=29 April 2009 |accessdate=4 May 2014 }}
105. ^Lee, Pascal (2007), "Phobos-Deimos ASAP: A Case for the Human Exploration of the Moons of Mars", First Int’l Conf. Explor. Phobos & Deimos, NASA Research Park, Moffett Field, CA, 5–7 Nov 2007, LPI Contrib. 1377, p. 25 [#7044] |http://www.lpi.usra.edu/meetings/phobosdeimos2007/pdf/7044.pdf
106. ^{{cite book |last1=Arias |first1=Francisco. J |title=On the Use of the Sands of Phobos and Deimos as a Braking Technique for Landing Large Payloads on Mars |journal=53rd AIAA/SAE/ASEE Joint Propulsion Conference Atlanta, GA, Propulsion and Energy, (AIAA 201–4876) |date=2017 |doi=10.2514/6.2017-4876 |isbn=978-1-62410-511-1 }}
107. ^{{cite journal |last1=Arias |first1=Francisco. J |last2=De Las Heras |first2=Salvador. A |date=2018 |title=Sandbraking. A technique for landing large payloads on Mars using the sands of Phobos |journal=Aerospace Science and Technology |volume=85 |pages=409–415 |doi=10.1016/j.ast.2018.11.041 |issn=1270-9638}}

External links

{{Commons and category|Phobos|Phobos (moon)}}
  • [https://web.archive.org/web/20140624191709/https://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar_Phobos Phobos Profile] at NASA's Solar System Exploration site
  • HiRISE Phobos
  • USGS Phobos nomenclature
  • [https://web.archive.org/web/20081204114657/http://www.usno.navy.mil/hallmedal.html Asaph Hall and the Moons of Mars]
  • Flight around Phobos (movie)
  • Animation of Phobos
  • Scale of Phobos    
  • Mars Express view of Phobos
  • Phobos cartography (MIIGAiK Extraterrestrial Laboratory)
{{Mars}}{{Solar System moons (compact)}}{{Solar System}}{{portal bar|Mars}}{{Authority control}}{{DEFAULTSORT:Phobos}}

4 : Astronomical objects discovered in 1877|Moons of Mars|Phobos (moon)|Articles containing video clips

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 1:31:10