请输入您要查询的百科知识:

 

词条 Phylogenetics
释义

  1. Construction of a phylogenetic tree

  2. History

      Ernst Haeckel's recapitulation theory    Timeline of key events  

  3. See also

  4. References

  5. Bibliography

  6. External links

{{short description|Study of the evolutionary history and relationships among individuals or groups of organisms}}{{Use dmy dates|date=July 2012}}{{Evolutionary biology|expanded=Fields}}

In biology, phylogenetics {{IPAc-en|ˌ|f|aɪ|l|oʊ|dʒ|ə|ˈ|n|ɛ|t|ɪ|k|s|,_|-|l|ə|-}}{{refn|{{Dictionary.com|phylogenetic}}}}{{refn|{{MerriamWebsterDictionary|phylogenetic}}}} (Greek: φυλή, φῦλον – phylé, phylon = tribe, clan, race + γενετικός – genetikós = origin, source, birth)[1] is the study of the evolutionary history and relationships among individuals or groups of organisms (e.g. species, or populations). These relationships are discovered through phylogenetic inference methods that evaluate observed heritable traits, such as DNA sequences or morphology under a model of evolution of these traits. The result of these analyses is a phylogeny (also known as a phylogenetic tree) – a diagrammatic hypothesis about the history of the evolutionary relationships of a group of organisms.[2] The tips of a phylogenetic tree can be living organisms or fossils, and represent the "end", or the present, in an evolutionary lineage. Phylogenetic analyses have become central to understanding biodiversity, evolution, ecology, and genomes.

Taxonomy is the identification, naming and classification of organisms. It is usually richly informed by phylogenetics, but remains a methodologically and logically distinct discipline.[3] The degree to which taxonomies depend on phylogenies (or classification depends on evolutionary development) differs depending on the school of taxonomy: phenetics ignores phylogeny altogether, trying to represent the similarity between organisms instead; cladistics (phylogenetic systematics) tries to reproduce phylogeny in its classification without loss of information; evolutionary taxonomy tries to find a compromise between them.

Construction of a phylogenetic tree

{{main|Computational phylogenetics}}

Usual methods of phylogenetic inference involve computational approaches implementing the optimality criteria and methods of parsimony, maximum likelihood (ML), and MCMC-based Bayesian inference. All these depend upon an implicit or explicit mathematical model describing the evolution of characters observed.

Phenetics, popular in the mid-20th century but now largely obsolete, used distance matrix-based methods to construct trees based on overall similarity in morphology or other observable traits (i.e. in the phenotype, not the DNA), which was often assumed to approximate phylogenetic relationships.

Prior to 1950, phylogenetic inferences were generally presented as narrative scenarios. Such methods are often ambiguous and lack explicit criteria for evaluating alternative hypotheses.[4][5][6]

History

The term "phylogeny" derives from the German Phylogenie, introduced by Haeckel in 1866,[7] and the Darwinian approach to classification became known as the "phyletic" approach.{{sfn|Stuessy|2009}}

Ernst Haeckel's recapitulation theory

During the late 19th century, Ernst Haeckel's recapitulation theory, or "biogenetic fundamental law", was widely accepted. It was often expressed as "ontogeny recapitulates phylogeny", i.e. the development of a single organism during its lifetime, from germ to adult, successively mirrors the adult stages of successive ancestors of the species to which it belongs. But this theory has long been rejected.[8][9] Instead, ontogeny evolves – the phylogenetic history of a species cannot be read directly from its ontogeny, as Haeckel thought would be possible, but characters from ontogeny can be (and have been) used as data for phylogenetic analyses; the more closely related two species are, the more apomorphies their embryos share.

Timeline of key events

  • 14th century, lex parsimoniae (parsimony principle), William of Ockam, English philosopher, theologian, and Franciscan friar, but the idea actually goes back to Aristotle, precursor concept
  • 1763, Bayesian probability, Rev. Thomas Bayes,[10] precursor concept
  • 18th century, Pierre Simon (Marquis de Laplace), perhaps first to use ML (maximum likelihood), precursor concept
  • 1809, evolutionary theory, Philosophie Zoologique, Jean-Baptiste de Lamarck, precursor concept, foreshadowed in the 17th century and 18th century by Voltaire, Descartes, and Leibniz, with Leibniz even proposing evolutionary changes to account for observed gaps suggesting that many species had become extinct, others transformed, and different species that share common traits may have at one time been a single race,[11] also foreshadowed by some early Greek philosophers such as Anaximander in the 6th century BC and the atomists of the 5th century BC, who proposed rudimentary theories of evolution[12]
  • 1837, Darwin's notebooks show an evolutionary tree[13]
  • 1843, distinction between homology and analogy (the latter now referred to as homoplasy), Richard Owen, precursor concept
  • 1858, Paleontologist Heinrich Georg Bronn (1800–1862) published a hypothetical tree to illustrating the paleontological "arrival" of new, similar species following the extinction of an older species. Bronn did not propose a mechanism responsible for such phenomena, precursor concept.[14]
  • 1858, elaboration of evolutionary theory, Darwin and Wallace,[15] also in Origin of Species by Darwin the following year, precursor concept
  • 1866, Ernst Haeckel, first publishes his phylogeny-based evolutionary tree, precursor concept
  • 1893, Dollo's Law of Character State Irreversibility,[16] precursor concept
  • 1912, ML recommended, analyzed, and popularized by Ronald Fisher, precursor concept
  • 1921, Tillyard uses term "phylogenetic" and distinguishes between archaic and specialized characters in his classification system[17]
  • 1940, term "clade" coined by Lucien Cuénot
  • 1949, Jackknife resampling, Maurice Quenouille (foreshadowed in '46 by Mahalanobis and extended in '58 by Tukey), precursor concept
  • 1950, Willi Hennig's classic formalization[18]
  • 1952, William Wagner's groundplan divergence method[19]
  • 1953, "cladogenesis" coined[20]
  • 1960, "cladistic" coined by Cain and Harrison[21]
  • 1963, first attempt to use ML (maximum likelihood) for phylogenetics, Edwards and Cavalli-Sforza[22]
  • 1965
    • Camin-Sokal parsimony, first parsimony (optimization) criterion and first computer program/algorithm for cladistic analysis both by Camin and Sokal[23]
    • character compatibility method, also called clique analysis, introduced independently by Camin and Sokal (loc. cit.) and E. O. Wilson[24]
  • 1966
    • English translation of Hennig[25]
    • "cladistics" and "cladogram" coined (Webster's, loc. cit.)
  • 1969
    • dynamic and successive weighting, James Farris[26]
    • Wagner parsimony, Kluge and Farris[27]
    • CI (consistency index), Kluge and Farris[27]
    • introduction of pairwise compatibility for clique analysis, Le Quesne[28]
  • 1970, Wagner parsimony generalized by Farris[29]
  • 1971
    • first successful application of ML to phylogenetics (for protein sequences), Neyman[30]
    • Fitch parsimony, Fitch[31]
    • NNI (nearest neighbour interchange), first branch-swapping search strategy, developed independently by Robinson[32] and Moore et al.
    • ME (minimum evolution), Kidd and Sgaramella-Zonta[33] (it is unclear if this is the pairwise distance method or related to ML as Edwards and Cavalli-Sforza call ML "minimum evolution")
  • 1972, Adams consensus, Adams[34]
  • 1976, prefix system for ranks, Farris[35]
  • 1977, Dollo parsimony, Farris[36]
  • 1979
    • Nelson consensus, Nelson[37]
    • MAST (maximum agreement subtree)((GAS)greatest agreement subtree), a consensus method, Gordon [38]
    • bootstrap, Bradley Efron, precursor concept[39]
  • 1980, PHYLIP, first software package for phylogenetic analysis, Felsenstein
  • 1981
    • majority consensus, Margush and MacMorris[40]
    • strict consensus, Sokal and Rohlf[41]
    • first computationally efficient ML algorithm, Felsenstein[42]
  • 1982
    • PHYSIS, Mikevich and Farris
    • branch and bound, Hendy and Penny[43]
  • 1985
    • first cladistic analysis of eukaryotes based on combined phenotypic and genotypic evidence Diana Lipscomb[44]
    • first issue of Cladistics
    • first phylogenetic application of bootstrap, Felsenstein[45]
    • first phylogenetic application of jackknife, Scott Lanyon[46]
  • 1986, MacClade, Maddison and Maddison
  • 1987, neighbor-joining method Saitou and Nei[47]
  • 1988, Hennig86 (version 1.5), Farris
    • Bremer support (decay index), Bremer[48]
  • 1989
    • RI (retention index), RCI (rescaled consistency index), Farris[49]
    • HER (homoplasy excess ratio), Archie[50]
  • 1990
    • combinable components (semi-strict) consensus, Bremer[51]
    • SPR (subtree pruning and regrafting), TBR (tree bisection and reconnection), Swofford and Olsen[52]
  • 1991
    • DDI (data decisiveness index), Goloboff[53][54]
    • first cladistic analysis of eukaryotes based only on phenotypic evidence, Lipscomb
  • 1993, implied weighting Goloboff[55]
  • 1994, reduced consensus: RCC (reduced cladistic consensus) for rooted trees, Wilkinson[56]
  • 1995, reduced consensus RPC (reduced partition consensus) for unrooted trees, Wilkinson[57]
  • 1996, first working methods for BI (Bayesian Inference)independently developed by Li,[58] Mau,[59] and Rannala and Yang[60] and all using MCMC (Markov chain-Monte Carlo)
  • 1998, TNT (Tree Analysis Using New Technology), Goloboff, Farris, and Nixon
  • 1999, Winclada, Nixon
  • 2003, symmetrical resampling, Goloboff[61]

See also

{{colbegin||colwidth=20em|rules=yes}}
  • {{Portal-inline|size=tiny|Phylogenetics}}
  • Angiosperm Phylogeny Group
  • Bauplan
  • Bioinformatics
  • Biomathematics
  • Coalescent theory
  • EDGE of Existence programme
  • Evolutionary taxonomy
  • Joe Felsenstein
  • Language family
  • Maximum parsimony
  • Microbial phylogenetics
  • Molecular phylogeny
  • Noogenesis
  • Ontogeny (psychoanalysis)
  • PhyloCode
  • Phylodynamics
  • Phylogenesis
  • Phylogenetic comparative methods
  • Phylogenetic network
  • Phylogenetic nomenclature
  • Phylogenetic tree viewers
  • Phylogenetics software
  • Phylogenomics
  • Phylogeny (psychoanalysis)
  • Phylogeography
  • Systematics
{{colend}}

References

1. ^{{cite book |last1=Liddell |first1=Henry George |authorlink1=Henry George Liddell |last2=Scott |first2=Robert |authorlink2=Robert Scott (philologist) |last3=Jones |first3=Henry Stuart |authorlink3=Henry Stuart-Jones |title=A Greek-English lexicon |year=1968 |publisher=Clarendon Press |location=Oxford |edition=9 |page=1961 |url=https://archive.org/stream/greekenglishlex00lidduoft#page/304/mode/2up}}
2. ^{{cite web| title=phylogeny| publisher=Biology online| url=http://www.biology-online.org/dictionary/Phylogeny| accessdate=2013-02-15}}
3. ^{{cite book |authorlink1=A. W. F. Edwards |author1=Edwards AWF |authorlink2=Luigi Luca Cavalli-Sforza |author2=Cavalli-Sforza LL |quote=Phylogenetics is the branch of life science concerned with the analysis of molecular sequencing data to study evolutionary relationships among groups of organisms. |year=1964 |chapter=Reconstruction of evolutionary trees |editor1-first=Vernon Hilton |editor1-last=Heywood |editor2-first=J. |editor2-last=McNeill |title=Phenetic and Phylogenetic Classification |pages=67–76 |oclc=733025912}}
4. ^Richard C. Brusca & Gary J. Brusca (2003). Invertebrates (2nd ed.). Sunderland, Massachusetts: Sinauer Associates. {{ISBN|978-0-87893-097-5}}.
5. ^Bock, W. J. (2004). Explanations in systematics. Pp. 49–56. In Williams, D. M. and Forey, P. L. (eds) Milestones in Systematics. London: Systematics Association Special Volume Series 67. CRC Press, Boca Raton, Florida.
6. ^Auyang, Sunny Y. (1998). Narratives and Theories in Natural History. In: Foundations of complex-system theories: in economics, evolutionary biology, and statistical physics. Cambridge, U.K.; New York: Cambridge University Press.{{page needed|date=June 2018}}
7. ^{{cite encyclopedia |last=Harper |first=Douglas |encyclopedia=Online Etymology Dictionary |title=Phylogeny |url=http://www.etymonline.com/index.php?allowed_in_frame=0&search=Phylogeny&searchmode=term |year=2010|accessdate=March 18, 2013}}
8. ^Blechschmidt, Erich (1977) The Beginnings of Human Life. Springer-Verlag Inc., p. 32: "The so-called basic law of biogenetics is wrong. No buts or ifs can mitigate this fact. It is not even a tiny bit correct or correct in a different form, making it valid in a certain percentage. It is totally wrong."
9. ^Ehrlich, Paul; Richard Holm; Dennis Parnell (1963) The Process of Evolution. New York: McGraw–Hill, p. 66: "Its shortcomings have been almost universally pointed out by modern authors, but the idea still has a prominent place in biological mythology. The resemblance of early vertebrate embryos is readily explained without resort to mysterious forces compelling each individual to reclimb its phylogenetic tree."
10. ^{{cite journal |doi=10.1098/rstl.1763.0053 |title=An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S |journal=Philosophical Transactions of the Royal Society of London |volume=53 |pages=370–418 |year=1763 |last1=Bayes |first1=Mr |last2=Price |first2=Mr }}
11. ^Strickberger, Monroe. 1996. Evolution, 2nd. ed. Jones & Bartlett.{{page needed|date=June 2018}}
12. ^The Theory of Evolution, Teaching Company course, Lecture 1
13. ^Darwin's Tree of Life {{webarchive|url=https://web.archive.org/web/20140313124644/http://www.nhm.ac.uk/nature-online/evolution/tree-of-life/darwin-tree/ |date=13 March 2014 }}
14. ^{{cite journal |doi=10.1007/s10739-008-9163-y |pmid=20027787 |title=Edward Hitchcock's Pre-Darwinian (1840) 'Tree of Life' |journal=Journal of the History of Biology |volume=42 |issue=3 |pages=561–92 |year=2008 |last1=Archibald |first1=J. David |citeseerx=10.1.1.688.7842 }}
15. ^{{cite journal |doi=10.1111/j.1096-3642.1858.tb02500.x |title=On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection |journal=Journal of the Proceedings of the Linnean Society of London. Zoology |volume=3 |issue=9 |pages=45–62 |year=1858 |last1=Darwin |first1=Charles |last2=Wallace |first2=Alfred }}
16. ^Dollo, Louis. 1893. Les lois de l'évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7: 164–66.
17. ^{{cite journal |doi=10.4039/Ent5335-2 |title=A New Classification of the Order Perlaria |journal=The Canadian Entomologist |volume=53 |issue=2 |pages=35–43 |year=2012 |last1=Tillyard |first1=R. J }}
18. ^{{cite book |last1=Hennig |first1=Willi |year=1950 |title=Grundzüge einer Theorie der Phylogenetischen Systematik |trans-title=Basic features of a theory of phylogenetic systematics |language=de |publisher=Deutscher Zentralverlag |location=Berlin |oclc=12126814 }}{{page needed|date=June 2018}}
19. ^{{cite journal |last1=Wagner |first1=Warren Herbert |year=1952 |title=The fern genus Diellia: structure, affinities, and taxonomy |journal=University of California Publications in Botany |volume=26 |issue=1–6 |pages=1–212 |oclc=4228844 }}
20. ^Webster's 9th New Collegiate Dictionary
21. ^{{cite journal |doi=10.1111/j.1469-7998.1960.tb05828.x |title=Phyletic Weighting |journal=Proceedings of the Zoological Society of London |volume=135 |issue=1 |pages=1–31 |year=2009 |last1=Cain |first1=A. J |last2=Harrison |first2=G. A }}
22. ^"The reconstruction of evolution" in {{cite journal |doi=10.1111/j.1469-1809.1963.tb00786.x |title=Abstracts of Papers |journal=Annals of Human Genetics |volume=27 |issue=1 |pages=103–5 |year=1963 }}
23. ^{{cite journal |doi=10.1111/j.1558-5646.1965.tb01722.x |title=A Method for Deducing Branching Sequences in Phylogeny |journal=Evolution |volume=19 |issue=3 |pages=311–26 |year=1965 |last1=Camin |first1=Joseph H |last2=Sokal |first2=Robert R }}
24. ^{{cite journal |doi=10.2307/2411550 |jstor=2411550 |title=A Consistency Test for Phylogenies Based on Contemporaneous Species |journal=Systematic Zoology |volume=14 |issue=3 |pages=214–20 |year=1965 |last1=Wilson |first1=Edward O }}
25. ^Hennig. W. (1966). Phylogenetic systematics. Illinois University Press, Urbana.{{page needed|date=June 2018}}
26. ^{{cite journal |doi=10.2307/2412182 |jstor=2412182 |title=A Successive Approximations Approach to Character Weighting |journal=Systematic Zoology |volume=18 |issue=4 |pages=374–85 |year=1969 |last1=Farris |first1=James S }}
27. ^{{cite journal |doi=10.1093/sysbio/18.1.1 |title=Quantitative Phyletics and the Evolution of Anurans |journal=Systematic Biology |volume=18 |issue=1 |pages=1–32 |year=1969 |last1=Kluge |first1=A. G |last2=Farris |first2=J. S }}
28. ^{{cite journal |doi=10.2307/2412604 |jstor=2412604 |title=A Method of Selection of Characters in Numerical Taxonomy |journal=Systematic Zoology |volume=18 |issue=2 |pages=201–205 |year=1969 |last1=Quesne |first1=Walter J. Le }}
29. ^{{cite journal |doi=10.1093/sysbio/19.1.83 |title=Methods for Computing Wagner Trees |journal=Systematic Biology |volume=19 |pages=83–92 |year=1970 |last1=Farris |first1=J. S }}
30. ^Neyman, J. (1971). Molecular studies: A source of novel statistical problems. In: Gupta S. S., Yackel J. (eds), Statistical Decision Theory and Related Topics, pp. 1–27. Academic Press, New York.
31. ^{{cite journal |doi=10.1093/sysbio/20.4.406 |jstor=2412116 |title=Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology |journal=Systematic Biology |volume=20 |issue=4 |pages=406–16 |year=1971 |last1=Fitch |first1=W. M }}
32. ^{{cite journal |doi=10.1016/0095-8956(71)90020-7 |title=Comparison of labeled trees with valency three |journal=Journal of Combinatorial Theory, Series B |volume=11 |issue=2 |pages=105–19 |year=1971 |last1=Robinson |first1=D.F }}
33. ^{{cite journal |pmid=5089842 |pmc=1706731 |year=1971 |author1=Kidd |first1=K. K |title=Phylogenetic analysis: Concepts and methods |journal=American Journal of Human Genetics |volume=23 |issue=3 |pages=235–52 |last2=Sgaramella-Zonta |first2=L. A }}
34. ^{{cite journal |doi=10.1093/sysbio/21.4.390 |title=Consensus Techniques and the Comparison of Taxonomic Trees |journal=Systematic Biology |volume=21 |issue=4 |pages=390–397 |year=1972 |last1=Adams |first1=E. N }}
35. ^{{cite journal |doi=10.2307/2412495 |jstor=2412495 |title=Phylogenetic Classification of Fossils with Recent Species |journal=Systematic Zoology |volume=25 |issue=3 |pages=271–282 |year=1976 |last1=Farris |first1=James S }}
36. ^{{cite journal |doi=10.1093/sysbio/26.1.77 |title=Phylogenetic Analysis Under Dollo's Law |journal=Systematic Biology |volume=26 |pages=77–88 |year=1977 |last1=Farris |first1=J. S }}
37. ^{{cite journal |doi=10.1093/sysbio/28.1.1 |title=Cladistic Analysis and Synthesis: Principles and Definitions, with a Historical Note on Adanson's Familles Des Plantes (1763-1764) |journal=Systematic Biology |volume=28 |pages=1–21 |year=1979 |last1=Nelson |first1=G }}
38. ^{{cite journal |doi=10.2307/2335236 |jstor=2335236 |title=A Measure of the Agreement between Rankings |journal=Biometrika |volume=66 |issue=1 |pages=7–15 |year=1979 |last1=Gordon |first1=A. D }}
39. ^Efron B. (1979). Bootstrap methods: another look at the jackknife. Ann. Stat. 7: 1–26.
40. ^{{cite journal |doi=10.1016/S0092-8240(81)90019-7 |title=Consensus-trees |journal=Bulletin of Mathematical Biology |volume=43 |issue=2 |pages=239 |year=1981 |last1=Margush |first1=T |last2=McMorris |first2=F }}
41. ^{{cite journal |doi=10.2307/2413252 |jstor=2413252 |title=Taxonomic Congruence in the Leptopodomorpha Re-Examined |journal=Systematic Zoology |volume=30 |issue=3 |pages=309 |year=1981 |last1=Sokal |first1=Robert R |last2=Rohlf |first2=F. James }}
42. ^{{cite journal |doi=10.1007/BF01734359 |pmid=7288891 |title=Evolutionary trees from DNA sequences: A maximum likelihood approach |journal=Journal of Molecular Evolution |volume=17 |issue=6 |pages=368–76 |year=1981 |last1=Felsenstein |first1=Joseph }}
43. ^{{cite journal |doi=10.1016/0025-5564(82)90027-X |title=Branch and bound algorithms to determine minimal evolutionary trees |journal=Mathematical Biosciences |volume=59 |issue=2 |pages=277 |year=1982 |last1=Hendy |first1=M.D |last2=Penny |first2=David }}
44. ^Lipscomb, Diana. 1985. The Eukaryotic Kingdoms. Cladistics 1: 127–40.
45. ^Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
46. ^{{cite journal |doi=10.1093/sysbio/34.4.397 |title=Detecting Internal Inconsistencies in Distance Data |journal=Systematic Biology |volume=34 |issue=4 |pages=397–403 |year=1985 |last1=Lanyon |first1=S. M |citeseerx=10.1.1.1000.3956 }}
47. ^{{cite journal |doi=10.1093/oxfordjournals.molbev.a040454 |pmid=3447015 |title=The neighbor-joining method: A new method for reconstructing phylogenetic trees |journal=Molecular Biology and Evolution |volume=4 |issue=4 |pages=406–25 |year=1987 |last1=Saitou |first1=N. |last2=Nei |first2=M. }}
48. ^{{cite journal |doi=10.1111/j.1558-5646.1988.tb02497.x |pmid=28563878 |title=The Limits of Amino Acid Sequence Data in Angiosperm Phylogenetic Reconstruction |journal=Evolution |volume=42 |issue=4 |pages=795–803 |year=1988 |last1=Bremer |first1=Kåre }}
49. ^{{cite journal |doi=10.1111/j.1096-0031.1989.tb00573.x |title=The Retention Index and the Rescaled Consistency Index |journal=Cladistics |volume=5 |issue=4 |pages=417–419 |year=1989 |last1=Farris |first1=James S }}
50. ^{{cite journal |doi=10.2307/2992286 |jstor=2992286 |title=Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index |journal=Systematic Zoology |volume=38 |issue=3 |pages=253–269 |year=1989 |last1=Archie |first1=James W }}
51. ^{{cite journal |doi=10.1111/j.1096-0031.1990.tb00551.x |title=Combinable Component Consensus |journal=Cladistics |volume=6 |issue=4 |pages=369–372 |year=1990 |last1=Bremer |first1=Kåre }}
52. ^D. L. Swofford and G. J. Olsen. 1990. Phylogeny reconstruction. In D. M. Hillis and G. Moritz (eds.), Molecular Systematics, pages 411–501. Sinauer Associates, Sunderland, Mass.
53. ^{{cite journal |doi=10.1111/j.1096-0031.1991.tb00035.x |title=Homoplasy and the Choice Among Cladograms |journal=Cladistics |volume=7 |issue=3 |pages=215–232 |year=1991 |last1=Goloboff |first1=Pablo A }}
54. ^{{cite journal |doi=10.1111/j.1096-0031.1991.tb00046.x |title=Random Data, Homoplasy and Information |journal=Cladistics |volume=7 |issue=4 |pages=395–406 |year=1991 |last1=Goloboff |first1=Pablo A }}
55. ^{{cite journal |doi=10.1111/j.1096-0031.1993.tb00209.x |title=Estimating Character Weights During Tree Search |journal=Cladistics |volume=9 |pages=83–91 |year=1993 |last1=Goloboff |first1=Pablo A }}
56. ^{{cite journal |doi=10.1093/sysbio/43.3.343 |title=Common Cladistic Information and its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles |journal=Systematic Biology |volume=43 |issue=3 |pages=343–368 |year=1994 |last1=Wilkinson |first1=M }}
57. ^{{cite journal |doi=10.2307/2413604 |jstor=2413604 |title=More on Reduced Consensus Methods |journal=Systematic Biology |volume=44 |issue=3 |pages=435–439 |year=1995 |last1=Wilkinson |first1=Mark }}
58. ^{{cite journal |doi=10.1080/01621459.2000.10474227 |jstor=2669394 |title=Phylogenetic Tree Construction Using Markov Chain Monte Carlo |journal=Journal of the American Statistical Association |volume=95 |issue=450 |pages=493 |year=2000 |last1=Li |first1=Shuying |last2=Pearl |first2=Dennis K |last3=Doss |first3=Hani |citeseerx=10.1.1.40.4461 }}
59. ^{{cite journal |doi=10.1111/j.0006-341X.1999.00001.x |pmid=11318142 |jstor=2533889 |title=Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods |journal=Biometrics |volume=55 |issue=1 |pages=1–12 |year=1999 |last1=Mau |first1=Bob |last2=Newton |first2=Michael A |last3=Larget |first3=Bret |citeseerx=10.1.1.139.498 }}
60. ^{{cite journal |doi=10.1007/BF02338839 |pmid=8703097 |title=Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference |journal=Journal of Molecular Evolution |volume=43 |issue=3 |pages=304–11 |year=1996 |last1=Rannala |first1=Bruce |last2=Yang |first2=Ziheng }}
61. ^{{cite journal |doi=10.1016/S0748-3007(03)00060-4 |title=Improvements to resampling measures of group support |journal=Cladistics |volume=19 |issue=4 |pages=324–32 |year=2003 |last1=Goloboff |first1=P }}

Bibliography

{{refbegin|30em}}
  • {{Cite book |last1=Schuh |first1=Randall T. |last2=Brower |first2=Andrew V.Z. |year=2009 |title=Biological Systematics: principles and applications |location=Ithaca |publisher=Comstock Pub. Associates/Cornell University Press |edition=2nd |isbn=978-0-8014-4799-0 |oclc=312728177}}
  • {{Cite book|editor1-link=Peter Forster (geneticist)|editor1-last=Forster|editor1-first=Peter|editor2-link=Colin Renfrew, Baron Renfrew of Kaimsthorn|editor2-last=Renfrew|editor2-first=Colin|title=Phylogenetic Methods and the Prehistory of Languages|publisher= McDonald Institute Press, University of Cambridge|year=2006|isbn=978-1-902937-33-5|oclc=69733654}}
  • {{Cite book|last1=Baum|first1=David A.|last2=Smith|first2=Stacey D.|title=Tree Thinking: an introduction to phylogenetic biology|location=Greenwood Village, CO|publisher=Roberts and Company|year=2013|isbn=978-1-936221-16-5|oclc=767565978}}
  • {{cite book|last=Stuessy|first=Tod F.|title=Plant Taxonomy: The Systematic Evaluation of Comparative Data|publisher=Columbia University Press|isbn=978-0-231-14712-5|url=https://books.google.com/books?id=0bYs8F0Mb9gC|accessdate=6 February 2014|year=2009|ref=harv}}
{{refend}}

External links

{{Wiktionary|phylogenetics}}{{Phylogenetics}}{{Evolution}}{{Portal bar|Evolutionary biology}}{{Authority control}}

1 : Phylogenetics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 12:00:39