词条 | Cellular noise |
释义 |
Cellular noise was originally, and is still often, examined in the context of gene expression levels – either the concentration or copy number of the products of genes within and between cells. As gene expression levels are responsible for many fundamental properties in cellular biology, including cells' physical appearance, behaviour in response to stimuli, and ability to process information and control internal processes, the presence of noise in gene expression has profound implications for many processes in cellular biology. DefinitionsThe most frequent quantitative definition of noise is the coefficient of variation: where is the noise in a quantity , is the mean value of and is the standard deviation of . This measure is dimensionless, allowing a relative comparison of the importance of noise, without necessitating knowledge of the absolute mean. Other quantities often used for mathematical convenience are the Fano factor: and the normalized variance: Intrinsic and extrinsic noiseCellular noise is often investigated in the framework of intrinsic and extrinsic noise. Intrinsic noise refers to variation in identically-regulated quantities within a single cell: for example, the intra-cell variation in expression levels of two identically-controlled genes. Extrinsic noise refers to variation in identically-regulated quantities between different cells: for example, the cell-to-cell variation in expression of a given gene. Intrinsic and extrinsic noise levels are often compared in dual reporter studies, in which the expression levels of two identically-regulated genes (often fluorescent reporters like GFP and YFP) are plotted for each cell in a population.[4] SourcesNote: These lists are illustrative, not exhaustive, and identification of noise sources is an active and expanding area of research.
Note that extrinsic noise can affect levels and types of intrinsic noise:[15] for example, extrinsic differences in the mitochondrial content of cells lead, through differences in ATP levels, to some cells transcribing faster than others, affecting the rates of gene expression and the magnitude of intrinsic noise across the population.[13] EffectsNote: These lists are illustrative, not exhaustive, and identification of noise effects is an active and expanding area of research.
AnalysisAs many quantities of cell biological interest are present in discrete copy number within the cell (single DNAs, dozens of mRNAs, hundreds of proteins), tools from discrete stochastic mathematics are often used to analyse and model cellular noise.[28][29] In particular, master equation treatments – where the probabilities of observing a system in a state at time are linked through ODEs – have proved particularly fruitful. A canonical model for noise gene expression, where the processes of DNA activation, transcription and translation are all represented as Poisson processes with given rates, gives a master equation which may be solved exactly (with generating functions) under various assumptions or approximated with stochastic tools like Van Kampen's system size expansion. Numerically, the Gillespie algorithm or stochastic simulation algorithm is often used to create realisations of stochastic cellular processes, from which statistics can be calculated. The problem of inferring the values of parameters in stochastic models (parametric inference) for biological processes, which are typically characterised by sparse and noisy experimental data, is an active field of research, with methods including Bayesian MCMC and approximate Bayesian computation proving adaptable and robust.[3] Regarding the two-state model, a moment-based method was described for parameters inference from mRNAs distributions.[27] {{clear}}References1. ^{{Cite journal|last=Thomas|first=Philipp|date=2019-01-24|title=Intrinsic and extrinsic noise of gene expression in lineage trees|url=https://www.nature.com/articles/s41598-018-35927-x|journal=Scientific Reports|language=en|volume=9|issue=1|pages=474|doi=10.1038/s41598-018-35927-x|issn=2045-2322|pmc=6345792|pmid=30679440}} [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25]2. ^{{Cite journal|last=Weiße|first=Andrea Y.|last2=Vincent Danos|last3=Terradot|first3=Guillaume|last4=Thomas|first4=Philipp|date=2018-10-30|title=Sources, propagation and consequences of stochasticity in cellular growth|journal=Nature Communications|language=en|volume=9|issue=1|pages=4528|doi=10.1038/s41467-018-06912-9|issn=2041-1723|pmc=6207721|pmid=30375377|bibcode=2018NatCo...9.4528T}} 3. ^{{cite journal |last1=Sunnåker|display-authors=et al |title=Approximate bayesian computation |journal=PLoS Computational Biology |date=2013 |volume=9 |issue=1}} 4. ^1 {{cite journal | title=Stochastic gene expression in a single cell | author=Elowitz, M.B. | author2=Levine, A.J. | author3=Siggia, E.D. | author4=Swain, P.S. | journal=Science | volume=297 | issue=5584 | pages=1183–6 | year = 2002 |doi=10.1126/science.1070919 | pmid=12183631| bibcode=2002Sci...297.1183E }} 5. ^1 {{cite journal | author= Athale, C.A. | author2= Chaudhari, H. | title=Population length variability and nucleoid numbers in Escherichia coli | journal=Bioinformatics | volume=27 | issue= 21 | pages=2944–2998 | year=2011 | doi=10.1093/bioinformatics/btr501 | pmid=21930671}} 6. ^1 {{cite journal | author=Morelli, M.J. | author2=Allen, R.J. | author3=ten Wolde, P.R. | last-author-amp=yes | title=Effects of macromolecular crowding on genetic networks | journal=Biophys. J. | volume=101 | issue=12 | pages=2882–2891 | year=2011 | doi=10.1016/j.bpj.2011.10.053 | pmid=22208186 | pmc=3244068| bibcode=2011BpJ...101.2882M }} 7. ^1 {{cite journal |vauthors=das Neves RP, Jones NS, Andreu L, Gupta R, Enver T, Iborra FJ | title=Connecting Variability in Global Transcription Rate to Mitochondrial Variability | journal=PLoS Biol. | year=2010 | volume=8 | issue=12 | pages=e1000560 | doi=10.1371/journal.pbio.1000560 | pmid=21179497 | pmc=3001896}} 8. ^1 2 3 4 {{ cite journal |vauthors=Johnston IG, Gaal B, das Neves RP, Enver T, Iborra FJ, Jones NS | title=Mitochondrial Variability as a Source of Extrinsic Cellular Noise | journal=PLoS Comput. Biol. | volume=8 | issue=3 | pages=e1002416 | year=2012 | doi=10.1371/journal.pcbi.1002416 | pmid=22412363 | pmc=3297557| bibcode=2012PLSCB...8E2416J | arxiv=1107.4499 }} 9. ^1 {{cite journal | title=Random partitioning of molecules at cell division | author=Huh, D. | author2=Paulsson, J. | journal=Proc. Natl. Acad. Sci. USA | volume=108 | issue=36 | pages=15004–15009 | year=2011 |doi=10.1073/pnas.1013171108| pmid=21873252 | pmc=3169110 | bibcode=2011PNAS..10815004H }} 10. ^1 2 {{ cite journal | title=Fundamental limits on the suppression of molecular fluctuations | author=Lestas, I. | author2=Vinnicombe, G. | author3=Paulsson, J. | journal=Nature | volume=467 | issue=7312 | pages=174–8 | year=2010 | doi=10.1038/nature09333 | pmid=20829788 | pmc=2996232| bibcode=2010Natur.467..174L }} 11. ^1 {{cite journal | title=A chance at survival: gene expression noise and phenotypic diversification strategies. |vauthors=Fraser D, Kaern M | journal=Mol. Microbiol. | volume=71 |issue=6 | pages=1333–1340 | year=2009 | doi=10.1111/j.1365-2958.2009.06605.x | pmid=19220745}} 12. ^1 {{cite journal | title=Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis | author=Spencer, S.L. | author2=Gaudet, S. | author3=Albeck, J.G. | author4=Burke, J.M. | author5=Sorger, P.K.| journal=Nature | volume=459 | issue=7245 | pages=428–432 | year=2009 |doi=10.1038/nature08012 | pmid=19363473 | pmc=2858974 | bibcode=2009Natur.459..428S }} 13. ^1 {{cite journal | title=Models of stochastic gene expression | author=Paulsson, J. | journal=Phys. Life Rev. | volume=2 | issue=2 | pages=157–175| year=2005 | doi=10.1016/j.plrev.2005.03.003|bibcode=2005PhLRv...2..157P }} 14. ^1 {{cite journal | title=Stochastic modelling for quantitative description of heterogeneous biological systems | author=Wilkinson, D.J. | journal=Nat. Rev. Genet. | volume=10 | issue=2 | pages=122–133 | year=2009 | doi=10.1038/nrg2509 | pmid=19139763}} 15. ^1 {{cite journal | title=Strategies for cellular decision-making | author=Perkins, T.J. | author2=Swain, P.S. | last-author-amp=yes | journal=Mol. Syst. Biol. | volume=5 | issue = 236 | pages=326 | doi=10.1038/msb.2009.83 | pmid=19920811 | pmc=2795477 | year=2009}} 16. ^1 {{cite journal | title=Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise | vauthors = Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS | journal=Nature | volume=441 | issue = 7095 | pages=840–846 | year=2006 | doi = 10.1038/nature04785 | pmid=16699522| bibcode=2006Natur.441..840N }} 17. ^1 {{cite journal | title=Analytical distributions for stochastic gene expression | author = Shahrezaei, V. | author2 = Swain, P.S. | last-author-amp = yes | journal = Proc. Natl. Acad. Sci. USA | volume = 105 | issue=45 | pages=17256–17261 | year=2008 | doi=10.1073/pnas.0803850105| pmid = 18988743 | pmc = 2582303 | arxiv=0812.3344 | bibcode=2008PNAS..10517256S }} 18. ^1 {{cite journal | title = Do Stem Cells Play Dice? | author = T. Enver | author2 = C.M. Heyworth | author3 = T.M. Dexter | last-author-amp = yes | journal = Blood | volume= 92 | page=348 | year=1998 }} 19. ^1 {{cite journal | author =Kaern, M. | author2 =Elston, T.R. | author3 =Blake, W.J. | author4 =Collins, J.J. | last-author-amp =yes |title=Stochasticity in gene expression: from theories to phenotypes | journal =Nat. Rev. Genet. | volume=6 | issue =6 | pages=451–464 | year=2005 | doi=10.1038/nrg1615 | pmid =15883588 }} 20. ^1 {{cite journal | journal=Annu. Rev. Biophys. Biomol. Struct. | year=2007 | volume=36 | pages=413–434 | title=Living with noisy genes: how cells function reliably with inherent variability in gene expression | vauthors=Maheshri N, O'Shea EK | doi=10.1146/annurev.biophys.36.040306.132705 | pmid=17477840 }} 21. ^1 {{cite journal | journal=Phys. Biol. | year=2012| volume=9 | issue=6| page=065005 | title=Conceptualizing a tool to optimize therapy based on dynamic heterogeneity | vauthors=Liao D, Estévez-Salmerón L, Tlsty TD | last-author-amp=yes | doi=10.1088/1478-3975/9/6/065005 | pmid=23197078| pmc=3618714| bibcode=2012PhBio...9f5005L }} 22. ^1 {{cite journal | journal=Biophys. J. | year=2013| volume=104 | issue=8| pages=1783–1793 | title=Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation | vauthors=Komorowski M, Miekisz J, Stumpf M PH| last-author-amp=yes| doi=10.1016/j.bpj.2013.02.027 | pmid=23601325 | pmc=3627874| bibcode=2013BpJ...104.1783K}} 23. ^1 2 {{cite journal|last1=Peccoud|first1=J.|last2=Ycart|first2=B.|title=Markovian Modelling of Gene Product Synthesis.|journal=Theoretical Population Biology|date=1995|volume=48|issue=2|pages=222–234 | last-author-amp=yes | doi= 10.1006/tpbi.1995.1027}} 24. ^1 {{cite journal | journal=Nature Genetics | year=2007 | doi=10.1038/ng2071 |title=Evolution of chromosome organization driven by selection for reduced gene expression noise.| vauthors=Batada NN, Hurst LD |pages=945-9 | pmid= 17660811}} 25. ^1 {{cite journal | journal=Bioinformatics | year=2013| doi=10.1093/bioinformatics/btt631 | title=StochDecomp - Matlab package for noise decomposition in stochastic biochemical systems | vauthors=Jetka T, Charzynska A, Gambin A, Stumpf M PH, Komorowski M | last-author-amp=yes | volume=30 | issue=1| pages=137–138 | pmid=24191070| arxiv=1308.3103 | bibcode=2013arXiv1308.3103J}} }} 5 : Cell biology|Biophysics|Molecular biology|Biostatistics|Randomness |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。