请输入您要查询的百科知识:

 

词条 Polariton
释义

  1. History

  2. Types

  3. See also

  4. References

  5. Further reading

  6. External links

{{distinguish|Polaron}}{{too technical|date=April 2018}}

In physics, polaritons {{IPAc-en|p|ə|ˈ|l|ær|ᵻ|t|ɒ|n|z|,_|p|oʊ|-}}{{refn|{{OxfordDictionaries.com|accessdate=2016-01-21|Polariton}}}} are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation.{{example needed|date=April 2018}} They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron (a fermionic one), which is an electron plus an attached phonon cloud.

Whenever the polariton picture is valid,{{huh|date=April 2018}} the model of photons propagating freely in crystals is insufficient. A major feature of polaritons is a strong dependency of the propagation speed of light through the crystal on the frequency of the photon. For exciton-polaritons, rich experimental results on various aspects have been gained in copper (I) oxide.

History

Oscillations in ionized gases were observed by Tonks and Langmuir in 1929. Polaritons were first considered theoretically by Tolpygo.[1][1] They were termed light-excitons in Ukrainian and Russian scientific literature. That name was suggested by Pekar, but the term polariton, proposed by Hopfield, was adopted. Coupled states of electromagnetic waves and phonons in ionic crystals and their dispersion relation, now known as phonon polaritons, were obtained by Tolpygo in 1950[2][1] and, independently, by Kun in 1951.[3][4] Collective interactions were published by Pines and Bohm in 1952, and plasmons were described in silver by Fröhlich and Pelzer in 1955. Ritchie predicted surface plasmons in 1957, then Ritchie and Eldridge published experiments and predictions of emitted photons from irradiated metal foils in 1962. Otto first published on surface plasmon-polaritons in 1968.[5]

Room-temperature superfluidity of polaritons was observed[6] in 2016 by Giovanni Lerario et al., at CNR NANOTEC Institute of Nanotechnology, using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. In February 2018, scientists reported the discovery of a new three-photon form of light, which may involve polaritons, that could be useful in the development of quantum computers.[7][8]

Types

A polariton is the result of the mixing of a photon with a polar excitation of a material. The following are types of polaritons:

  • Phonon polaritons result from coupling of an infrared photon with an optic phonon;
  • Exciton polaritons result from coupling of visible light with an exciton;
  • Intersubband polaritons result from coupling of an infrared or terahertz photon with an intersubband excitation;
  • Surface plasmon polaritons result from coupling of surface plasmons with light (the wavelength depends on the substance and its geometry);
  • Bragg polaritons ("Braggoritons") result from coupling of Bragg photon modes with bulk excitons;[9]
  • Plexcitons result from coupling plasmons with excitons;[10]
  • Magnon polaritons result from coupling of magnon with light.

See also

  • Atomic coherence
  • Polariton laser
  • Polariton superfluid
  • Polaritonics

References

1. ^K.B. Tolpygo, "Physical properties of a rock salt lattice made up of deformable ions," Zh. Eks.Teor. Fiz. vol. 20, No. 6, pp. 497–509 (1950), English translation: Ukrainian Journal of Physics, vol. 53, special issue (2008); {{cite web |url=http://ujp.bitp.kiev.ua/files/journals/53/si/53SI21p.pdf |title=Archived copy |accessdate=2015-10-15 |deadurl=yes |archiveurl=https://web.archive.org/web/20151208052530/http://ujp.bitp.kiev.ua/files/journals/53/si/53SI21p.pdf |archivedate=2015-12-08 |df= }}
2. ^{{Cite journal|url = |title = Physical properties of a rock salt lattice made up of deformable ions|last = Tolpygo|first = K.B.|date = 1950|journal = Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki (J. Exp. Theor. Phys.)|doi = |pmid = |access-date = |volume = 20|issue = 6|pages = 497–509, in Russian}}
3. ^{{Cite journal|url = |title = Lattice vibrations and optical waves in ionic crystals|last = Huang|first = Kun|date = 1951|journal = Nature|doi = 10.1038/167779b0|pmid = |access-date = |volume = 167|pages = 779–780|bibcode = 1951Natur.167..779H }}
4. ^{{Cite journal|url = |title = On the interaction between the radiation field and ionic crystals|last = Huang|first = Kun|date = 1951|journal = Proceedings of the Royal Society of London|doi = |pmid = |access-date = |volume = 208|series = A|pages = 352–365}}
5. ^{{Cite journal|url = |title = Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection|last = Otto|first = A.|date = 1968|journal = Z. Phys.|doi = 10.1007/BF01391532|pmid = |access-date = |volume = 216|pages = 398–410|bibcode = 1968ZPhy..216..398O }}
6. ^{{Cite journal|url = http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4147.html|title = Room-temperature superfluidity in a polariton condensate|last = Lerario|first = Giovanni|first2 = Antonio|last2 = Fieramosca|first3 = Fábio|last3 = Barachati|first4 = Dario|last4 = Ballarini|first5 = Konstantinos S.|last5 = Daskalakis|first6 = Lorenzo|last6 = Dominici|first7 = Milena|last7 = De Giorgi|first8 = Stefan A.|last8 = Maier|first9 = Giuseppe|last9 = Gigli|first10 = Stéphane|last10 = Kéna-Cohen|first11 = Daniele|last11 = Sanvitto|date = 2016|journal = Nature Physics|doi = 10.1038/nphys4147|pmid = |access-date = |volume =|pages = |bibcode =2017NatPh..13..837L |arxiv = 1609.03153}}
7. ^{{cite web |last=Hignett |first=Katherine |title=Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution |url=http://www.newsweek.com/photons-light-physics-808862 |date=16 February 2018 |work=Newsweek |accessdate=17 February 2018 }}
8. ^{{cite journal |author=Liang, Qi-Yu|display-authors=etal|title=Observation of three-photon bound states in a quantum nonlinear medium |url=http://science.sciencemag.org/content/359/6377/783 |date=16 February 2018 |journal=Science |volume=359 |issue=6377 |pages=783–786 |doi=10.1126/science.aao7293 |accessdate=17 February 2018 |arxiv=1709.01478 |bibcode=2018Sci...359..783L }}
9. ^Eradat N., et al. (2002) Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes, Appl. Phys. Lett. 80: 3491.
10. ^{{Cite journal|last=Yuen-Zhou|first=Joel|last2=Saikin|first2=Semion K.|last3=Zhu|first3=Tony|last4=Onbasli|first4=Mehmet C.|last5=Ross|first5=Caroline A.|last6=Bulovic|first6=Vladimir|last7=Baldo|first7=Marc A.|date=2016-06-09|title=Plexciton Dirac points and topological modes|url=http://www.nature.com/doifinder/10.1038/ncomms11783|journal=Nature Communications|language=en|volume=7|doi=10.1038/ncomms11783|issn=2041-1723|pmc=4906226|pmid=27278258|arxiv=1509.03687|bibcode=2016NatCo...711783Y}}

Further reading

  • {{cite journal|url=http://nvlpubs.nist.gov/nistpubs/jres/117/jres.117.001.pdf|title=The Interaction of Radio-Frequency Fields With Dielectric Materials at Macroscopic to Mesoscopic Scales|first=J.|last=Baker-Jarvis|journal=Journal of Research of the National Institute of Standards and Technology|volume=117|publisher=National Institute of Science and Technology|year=2012|doi=10.6028/jres.117.001|page=1}}
  • {{cite journal |last=Fano |first=U. |year=1956 |month= |title=Atomic Theory of Electromagnetic Interactions in Dense Materials |journal=Physical Review |volume=103 |issue=5 |pages=1202–1218 |doi=10.1103/PhysRev.103.1202 |url= |accessdate= |quote= |bibcode = 1956PhRv..103.1202F }}
  • {{cite journal |last=Hopfield |first=J. J. |year=1958 |month= |title=Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals |journal=Physical Review |volume=112 |issue=5 |pages=1555–1567 |doi=10.1103/PhysRev.112.1555 |url= |accessdate= |quote= |bibcode = 1958PhRv..112.1555H }}
  • {{cite news|title=New type of supercomputer could be based on ‘magic dust’ combination of light and matter |url=http://www.cam.ac.uk/research/news/new-type-of-supercomputer-could-be-based-on-magic-dust-combination-of-light-and-matter|accessdate=28 September 2017|publisher=University of Cambridge|date=25 September 2017|language=English}}

External links

  • [https://www.youtube.com/watch?v=sWmvZ0IGrsU YouTube animation explaining what is polariton in a semiconductor micro-resonator.]
  • Description of the experimental research on polariton fluids at the Institute of Nanotechnologies.
{{particles}}

1 : Quasiparticles

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 14:40:38