请输入您要查询的百科知识:

 

词条 Countably generated module
释义

  1. References

In mathematics, a module over a (not necessarily commutative) ring is countably generated if it is generated as a module by a countable subset. The importance of the notion comes from Kaplansky's theorem (Kaplansky 1958), which states that a projective module is a direct sum of countably generated modules.

More generally, a module over a possibly non-commutative ring is projective if and only if (i) it is flat, (ii) it is a direct sum of countably generated modules and (iii) it is a Mittag-Leffler module. (Bazzoni–Stovicek)

References

  • I. Kaplansky, Projective modules, https://www.jstor.org/stable/1970252.
  • S. Bazzoni, J. Stovicek, Flat Mittag-Leffler modules over countable rings, arXiv:1007.4977v2 [math.RA].
{{algebra-stub}}

1 : Module theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 18:13:38