词条 | Crisis (dynamical systems) |
释义 |
In applied mathematics and Astrodynamics, in the theory of dynamical systems, a crisis is the sudden appearance or disappearance of a strange attractor as the parameters of a dynamical system are varied.[1][2] This global bifurcation occurs when a chaotic attractor comes into contact with an unstable periodic orbit or its stable manifold.[3] As the orbit approaches the unstable orbit it will diverge away from the previous attractor, leading to a qualitatively different behaviour. Crises can produce intermittent behaviour. Grebogi, Ott, Romeiras, and Yorke distinguished between three types of crises:[4]
Note that the reverse case (sudden appearance, shrinking or splitting of attractors) can also occur. The latter two crises are sometimes called explosive bifurcations.[5] While crises are "sudden" as a parameter is varied, the dynamics of the system over time can show long transients before orbits leave the neighbourhood of the old attractor. Typically there is a time constant τ for the length of the transient that diverges as a power law (τ ≈ |p − pc|γ) near the critical parameter value pc. The exponent γ is called the critical crisis exponent.[6] There also exist systems where the divergence is stronger than a power law, so-called super-persistent chaotic transients.[7] See also
References1. ^Grebogi, C., E. Ott, and J. A. Yorke. Crises, sudden changes in chaotic attractors and transient chaos. Physica D 7, 181–200, 1983 2. ^Ali H. Nayfeh, Balakumar Balachandran. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, 1995 3. ^Arnol’d, V.I., Afraimovich, V.S., Ilyashenko,Yu.S. & Shilnikov, L.P. 1993. Bifurcation theory and catastrophe theory. In Dynamical Systems, vol. 5, Berlin and New York: Springer 4. ^Grebogi, C., E. Ott, arid J. A. Yorke. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics, Science. 238, 632–638, 1987 5. ^Thompson, J. M. T., H. B. Stewart, and Y. Ueda (1994). Safe, explosive, and dangerous bifurcations in dissipative dynamical systems, Phys. Rev. E49, 1019–1027 6. ^Grebogi C., Ott E., Romeiras F. and Yorke J. A. Critical Exponents for Crisis Induced Intermittency, Phys. Rev. A 36, 5365. (1987) 7. ^Grebogi C., Ott E. and Yorke J. A. Super-Persistent Chaotic Transients, Ergodic Theor. and Dyn. Sys. 5, 341. (1985) External links
3 : Dynamical systems|Nonlinear systems|Bifurcation theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。