词条 | David Siderovski |
释义 |
| birth_name = David Sideris | name = David Siderovski, PhD | image =Siderovski and Gee Aug2015.jpg | image_size = | alt = | caption = David Siderovski (left) and Gordon Gee | birth_date = {{birth date and age|1966|07|05}} | birth_place = Toronto, Ontario | residence = Morgantown, West Virginia | fields = Biochemistry Pharmacology Medical education | workplaces = Amgen Research Institute University of North Carolina at Chapel Hill West Virginia University | alma_mater = {{unbulleted list | Queen's University (BS) | University of Toronto (PhD) }} | thesis_title = Human Immunodeficiency Virus Type-1 Trans-activator of Transcription (HIV-1 Tat) | thesis_url = http://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/tape16/PQDD_0004/NQ27724.pdf | thesis_year = 1997 | doctoral_advisor = Tak Wah Mak | academic_advisors = Alfred G. Gilman Robert J. Lefkowitz | known_for = Discovery of RGS proteins | prizes = {{unbulleted list | Prince of Wales Prize in 1989 | BWF New Investigator Award in 2001 | John J. Abel Award in 2004 | Hettleman Prize in 2006 }} }}David Siderovski ({{birth date |1966|07|05}}) is a North American pharmacologist who is known as a leader in the fields of GPCR signaling and medical education.[1] Siderovski is the E.J. Van Liere Medicine Professor and Chair of Physiology, Pharmacology & Neuroscience for the West Virginia University School of Medicine; since July 2015, Siderovski is also the interim Co-Director of the WVU Addictions Research Group, a component part of WVU's Rockefeller Neurosciences Institute.[2] BackgroundSiderovski was born in Toronto, Ontario to Thelma and Angelo Sideris. He was the youngest of two children. EducationSiderovski attended Earl Haig Secondary School in North York, Ontario where he graduated in 1985. In 1989, Siderovski graduated with a Bachelor of Science (Honours) degree from Queen's University in Kingston, Ontario. He majored in biochemistry and received the Prince of Wales Prize awarded to the one student graduating with an honours B.Sc. degree who is judged to have the best academic record at Queen's in that year's graduating class.[3] Siderovski began his Ph.D training at the University of Toronto in May 1989. During his fifth year of Ph.D training, he also began full-time work as a Research Scientist in the Quantitative Biology Laboratory of the Amgen Research Institute (Toronto, Canada). He successfully defended his PhD thesis in November 1997.[4] He left the Amgen Research Institute in December 1998, after having contributed to three patents as a co-inventor.[5][6][7] Early academic careerAfter completing his industrial postdoctoral position at the Amgen Research Institute in 1998,[8] Siderovski joined the faculty at the University of North Carolina at Chapel Hill as a tenure-track Assistant Professor of Pharmacology. His earliest publications, starting with a brief original report in Current Biology,[9] chronicle his independent discovery of the RGS protein superfamily[10][11][12] and determinations of their varied protein structures[13][14] and cellular functions.[15] One of these early reports[13] was co-authored by two Nobel laureates: Alfred G. Gilman and Robert Lefkowitz. Contributions to scienceDiscovery and characterizations of RGS proteinsSiderovski was the first to report the cloning and sequencing of a cDNA encoding an RGS protein family member: 'G0/G1-switch gene-8' or G0S8[16][17] (subsequently renamed RGS2[18]); this cloning and sequencing work was conducted as a Queen's University undergraduate student in the Biochemistry laboratory of Dr. Donald R. Forsdyke.[19] Before the discovery of RGS proteins, the duration of heterotrimeric G-protein signaling was thought to be modulated by only two factors: the intrinsic GTP hydrolysis rate of the Gα subunit and acceleration of that rate by some specialized Gα effectors (i.e., phospholipase C-beta isoforms[20]). What Siderovski originally identified as the G0S8-homology ("GH") domain[9] in proteins from several eukaryotic genomes (human, Drosophila melanogaster, Caenorhabditis elegans, the budding yeast Saccharomyces cerevisiae) is now known as the "RGS domain", an approximately 130 amino-acid domain that contacts the Gα switch regions to stabilize the transition state, thus accelerating GTP hydrolysis (i.e., RGS proteins act as GTPase-accelerating proteins or "GAPs" for Gα-GTP; e.g., ref.[13]). Discovery of a superfamily of RGS domain-containing proteins that negatively regulate Gα-dependent signaling resolved a prior paradox that GPCR-stimulated signals are seen to terminate much faster in vivo than predicted from the slow GTP hydrolysis rates exhibited by purified Gα subunits in vitro. RGS proteins are now considered key desensitizers of heterotrimeric G protein signaling and, as such, as new drug discovery targets.[21][22] This foundational work by Siderovski on a new class of GPCR signaling regulators has been cited over 20,000 times according to Google Scholar[23] and also resulted in Siderovski editing a two-volume set of Methods in Enzymology chapters devoted to these regulatory proteins.[24][25] Characterization of regulator of G protein signaling-2 (RGS2)The first regulator of G protein signaling that Siderovski cloned,[17] RGS2 was subsequently found to be a potent GTPase-accelerating protein (GAP) for G-alpha-q in vitro and an attenuator of Gq-coupled receptor signaling in cell-based assays (e.g., ref.[15]). The Siderovski group, in a long-standing collaboration with the Structural Genomics Consortium node in Oxford, UK,[26] used x-ray crystallography and site-directed mutagenesis to ascertain the role of three critical residues within RGS2 that control its unique selectivity for G-alpha-q family subunits.[27] To begin to ascertain the physiological function(s) of RGS2, Siderovski worked with Amgen Inc. colleagues to ablate the Rgs2 locus in mice.[28] These knockout mice were critical to observing that Rgs2 loss-of-function mutations lead to constitutive hypertension.[29] Other vascular phenotypes in RGS2-null mice were seen to include persistent vasoconstriction, renovasculature abnormalities, and prolonged response to vasoconstrictors;[29][30] all of these mouse phenotypes are consistent with an increase in G-alpha-q signaling given the loss of RGS2 GAP activity. These mouse-based studies have helped inform subsequent studies of the human condition, in which genetic variations have now been identified in the human RGS2 gene between hypertensives and normotensives.[31] Discovery and characterization of RGS protein RGS12Working with AMGEN Inc. and Amgen Research Institute colleagues, Siderovski was the first to clone the cDNAs of both RGS12 and RGS14.[10] Subsequent work in his UNC laboratory revealed that both RGS12 and RGS14, in addition to their hallmark GTPase-accelerating activity directed towards heterotrimeric G-alpha-i/o subunits, are capable of binding and coordinating the activity of Ras GTPases and kinases of the mitogen-activating protein kinase (MAPK) cascade.[32][33] This GTPase/MAPK "signalsome scaffold" activity of RGS12 has subsequently been shown to function in nerve growth factor (NGF)-mediated signaling within dorsal root ganglion (DRG) neurons and in controlling GPCR signal input into the modulation of dopamine transporter (DAT) function in ventral striatum neurons, by Dr. Siderovski's UNC and WVU laboratories respectively.[32][34] Dr. Siderovski has contributed to the NIH-funded [https://www.mmrrc.org/ Mutant Mouse Resource & Research Centers (MMRRC)] two mouse strains relevant to RGS12 research studies: C57BL/6J-Rgs12tm1.1Dski/Mmnc (Rgs12 conditional knockout strain)[34] and B6J.129S7-Rgs12tm1Dski/Mmnc (Rgs12 conventional knockout strain).[34] Discovery of the GoLoco motifUsing then-nascent techniques of bioinformatics and genome data-mining to uncover novel regulators of G-protein signaling, Siderovski discovered a unique, second Gα interaction site, the GoLoco motif, within RGS12 and RGS14 that is shared with a number of non-RGS-domain-containing proteins.[35] The GoLoco/Gα interaction leads to inhibition of spontaneous nucleotide release – an activity previously thought to be the exclusive role of the Gβγ subunit. Siderovski's 2002 Nature paper[36] established the structural determinants of GoLoco motif biochemical activity and binding selectivity by describing the first high-resolution structure of a GoLoco motif/Gα complex. The true value of this GoLoco motif discovery was fully realized in subsequent 2003 Science and 2004 Cell papers describing that GoLoco motif-containing proteins GPR-1 and GPR-2 are critical for asymmetric cell division in the Caenorhabditis elegans zygote.[37][38] Those findings cemented the emerging view that GoLoco motif proteins act in a hitherto unexpected arena: namely, establishing a novel, receptor-independent Gα nucleotide cycle that controls microtubule dynamics, mitotic spindle pulling forces, and the act of chromosomal segregation during cell division.[39] Clinical genetic studies by Siderovski's WVU laboratory of variants in the human gene encoding a related GoLoco motif protein, GPSM3, have more recently revealed important insights into the role of neutrophil migration during the initiating stages of rheumatoid arthritis development.[40][41] Discovery of the GGL domainSince the discovery of the RGS proteins in 1996,[9] Dr. Siderovski's research has focused on demonstrating that these regulatory proteins are more than just G-alpha GAPs and can also participate in complex modulation of the heterotrimeric G-protein activation/deactivation cycle.[42] His group's original cloning and bioinformatic analysis of RGS11[14] led to a rethinking of the conventional model for heterotrimeric G-protein assembly,[43] based on the discovery that RGS11 and related proteins (RGS6, RGS7, RGS9) encode a polypeptide span outside the RGS domain with similarity to G-protein gamma subunits.[14][44] This region (called the "GGL" domain) binds to an outlier of the G-beta subunit family, namely G-beta5.[45] Conventional wisdom to that point held that G-beta and G-gamma subunits form an exclusive and obligate heterodimer;[46] Siderovski's discovery of a subset of RGS proteins able to dimerize with a G-beta subunit to the exclusion of conventional G-gamma subunits expanded the known combinatorial complexity of heterotrimer assembly and revealed that RGS proteins indeed interact with G-protein signaling components using domains outside the RGS domain.[47] Discovery of the plant RGS protein AtRGS1With the multitude of RGS proteins encoded within mouse, man, and model organisms, one central question has arisen: Is there any selectivity in their actions towards particular GPCRs? Dr. Siderovski's 2003 report of the cloning of AtRGS1,[48] the first plant RGS protein identified (from the model organism Arabidopsis thaliana), gave an emphatic demonstration of functional linkage between an RGS domain and a particular GPCR. The AtRGS1 protein is a unique amalgam of the two: an N-terminus with the topology and transmembrane domains of a GPCR and a C-terminal intracytosolic RGS domain. The action of the AtRGS1 RGS domain opposes that of the activated plant Gα (AtGPA1) in increasing cell elongation in hypocotyls in darkness and increasing cell production in roots grown in light. The discovery of AtRGS1 and its action in plant cell proliferation cast new light on the potential actions of cognate constituents in mammalian GPCR signaling. The presence of both GEF-like (GPCR) and GAP-like (RGS) domains within AtRGS1 may seem paradoxical at first blush (i.e., a potential futile cycle of nucleotide exchange and hydrolysis); however, the prevailing hypothesis put forth by Dr. Siderovski and colleagues is that AtRGS1 represents a ligand-operated GAP, given that AtGPA1 exhibits the highest rate of spontaneous nucleotide exchange as well as the slowest intrinsic GTPase activity ever seen for a wildtype Gα subunit.[49][50] Characterization of RGS protein RGS21With sponsored research funding (2007-2013) from The Coca-Cola Company on the molecular determinants of taste, Siderovski's group was the first to establish that RGS21, a small RGS protein whose mRNA transcript is uniquely expressed in taste bud cells,[51] has promiscuous Galpha-directed GAP activity in vitro.[52] A patent based on these studies was jointly published by the Siderovski group and staff of The Coca-Cola Company.[53] Siderovski's research group reported in 2018 that mice made deficient in RGS21 expression have blunted aversion to the bitter compounds quinine and denatonium, and blunted preference for monosodium glutamate, the sweeteners sucrose and SC45647, and moderate concentrations of NaCl.[54] Dr. Siderovski has contributed to the NIH-funded [https://www.mmrrc.org/ Mutant Mouse Resource & Research Centers (MMRRC)] two mouse strains relevant to RGS21 research studies: C57BL/6J-Rgs21tm1.1Dski/Mmnc (Rgs21 conditional knockout strain)[55] and B6.Cg-Tg(Rgs21-TagRFP)6Dski/Mmnc (a transgenic mouse strain that expresses TagRFP driven by the Rgs21 promoter, as engineered by BAC recombineering).[56][57] Characterization of G protein regulators in the human pathogen Entamoeba histolyticaInvasion of the intestinal mucosa by the pathogenic amoeba Entamoeba histolytica requires a dynamic actin cytoskeleton.[58][59] Siderovski's UNC laboratory cloned and characterized an RGS domain-containing Rho guanine nucleotide exchange factor (GEF) from E. histolytica (a.k.a. EhRGS-RhoGEF) and demonstrated its similarity to the mammalian leukemia-associated RhoGEF (LARG), PDZ-RhoGEF, and p115 RhoGEF proteins that are effectors for activated Gα12/13 subunits (providing a link between heterotrimeric (Gαβγ) and small G-protein signaling).[60] Siderovski's group also cloned the first described E. histolytica heterotrimeric G-protein subunits and discovered that EhRGS-RhoGEF is a binding partner for the EhGα1 subunit.[61] Elucidating this heterotrimeric G‑protein signaling pathway controlling Rho activation in E. histolytica has provided a link between intestinal environmental stimuli and intracellular Rho GTPases, the latter known as key regulators of the actin cytoskeleton important for amoebic invasion and pathogenesis.[58] Contributions to medical education and scholarshipFrom 2006 to 2012, Siderovski was the Thomas J. Dark Basic Science Director of UNC's Medical Scientist Training Program and directly responsible for assisting MD/PhD combined-degree trainees through their progress to PhD completion.[62] In August 2014, Siderovski was appointed Director of the West Virginia University School of Medicine MD/PhD Scholars Program.[63] While Co-Director of the WVU Addictions Research Group, Siderovski has been active in leading WVU's educational, clinical, and research response to the opioid addiction crisis (e.g., ref.[64]), including curation of a daily, West Virginia-centric blog (https://wvthdc.wordpress.com) on local events and responses to the crisis. In continued support of the highest standards of scientific discourse, Siderovski has been serving as Editorial Board Member for the Journal of Biological Chemistry since 2012.[65] HonorsIn 2001, Siderovski was awarded a $210,000 New Investigator Award in the Pharmacological Sciences by the Burroughs Wellcome Fund.[66] In 2004, Siderovski was named the top American Pharmacologist under 40 and awarded the John J. Abel Award by the American Society for Pharmacology and Experimental Therapeutics.[67] In 2006, the University of North Carolina at Chapel Hill awarded Siderovski the Phillip and Ruth Hettleman Prize for Artistic and Scholarly Achievement for his research on regulators of G protein signaling.[68] On June 22, 2012, the UNC Department of Pharmacology said farewell to Siderovski upon his move to become the Chair of the Department of Physiology and Pharmacology at West Virginia University: "Our congratulations to David. We wish him well in his new leadership position. We are better off for his having been here."[69] Select publications (all are indexed by NCBI's [https://www.ncbi.nlm.nih.gov/pubmed/?term=Siderovski+AND+%222012%2F02%2F01%22%5BPDat%5D+%3A+%222019%2F12%2F31%22%5BPDat%5D PubMed])
| last1 = Snow | first1 = B. E. | last2 = Betts | first2 = L. | last3 = Mangion | first3 = J. | last4 = Sondek | first4 = J. | last5 = Siderovski | first5 = D. P. | title = Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11 | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 96 | issue = 11 | pages = 6489–6494 | year = 1999 | pmid = 10339615 | pmc = 26909 | doi=10.1073/pnas.96.11.6489 | bibcode = 1999PNAS...96.6489S }}
| last1 = Siderovski | first1 = D. P. | last2 = Willard | first2 = F. S. | title = The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits | journal = International Journal of Biological Sciences | volume = 1 | issue = 2 | pages = 51–66 | year = 2005 | pmid = 15951850 | pmc = 1142213 | doi = 10.7150/ijbs.1.51 }}
| last1 = Lambert | first1 = N. A. | last2 = Johnston | first2 = C. A. | last3 = Cappell | first3 = S. D. | last4 = Kuravi | first4 = S. | last5 = Kimple | first5 = A. J. | last6 = Willard | first6 = F. S. | last7 = Siderovski | first7 = D. P. | title = Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 107 | issue = 15 | pages = 7066–7071 | year = 2010 | pmid = 20351284 | pmc = 2872438 | doi=10.1073/pnas.0912934107 | bibcode = 2010PNAS..107.7066L }}
| last1 = Bosch | first1 = D. E. | last2 = Willard | first2 = F. S. | last3 = Ramanujam | first3 = R. | last4 = Kimple | first4 = A. J. | last5 = Willard | first5 = M. D. | last6 = Naqvi | first6 = N. I. | last7 = Siderovski | first7 = D. P. | title = A P-loop mutation in Gα subunits prevents transition to the active state: implications for G-protein signaling in fungal pathogenesis | journal = PLoS Pathogens | volume = 8 | issue = 2 | pages = e1002553 | year = 2012 | pmid = 22383884 | pmc = 3285607 | doi=10.1371/journal.ppat.1002553 }}
| last1 = Bosch | first1 = D. E. | last2 = Kimple | first2 = A. J. | last3 = Muller | first3 = R. E. | last4 = Giguere | first4 = P. M. | last5 = Machius | first5 = M. | last6 = Willard | first6 = F. S. | last7 = Temple | first7 = B. R. | last8 = Siderovski | first8 = D. P. | title = Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica | journal = PLoS Pathogens | volume = 8 | issue = 11 | pages = e1003040 | year = 2012 | pmid = 23166501 | pmc = 3499586 | doi=10.1371/journal.ppat.1003040 }}
| last1 = Tarrant | first1 = T. K. | last2 = Billard | first2 = M. J. | last3 = Timoshchenko | first3 = R. G. | last4 = McGinnis | first4 = M. W. | last5 = Serafin | first5 = D. S. | last6 = Foreman | first6 = O. | last7 = Esserman | first7 = D. A. | last8 = Chao | first8 = N. J. | last9 = Lento | first9 = W. E. | last10 = Lee | first10 = D. M. | last11 = Patel | first11 = D. | last12 = Siderovski | first12 = D. P. | title = G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses | journal = J. Leukoc. Biol. | volume = 94 | issue = 6 | pages = 1243–1251 | year = 2013 | pmid = 23935208 | pmc = 3828605 | doi=10.1189/jlb.0213097 }}
| last1 = Gall | first1 = B. J. | last2 = Schroer | first2 = A. B. | last3 = Gross | first3 = J. D. | last4 = Setola | first4 = V. | last5 = Siderovski | first5 = D. P. | title = Reduction of GPSM3 expression akin to the arthritis-protective SNP rs204989 differentially affects migration in a neutrophil model | journal = Genes Immun. | volume = 17 | issue = 6 | pages = 321–327 | year = 2016 | pmid = 27307211 | pmc = 5009006 | doi=10.1038/gene.2016.26 }}
| last1 = Gross | first1 = J. D. | last2 = Kaski | first2 = S. W. | last3 = Schroer | first3 = A. B. | last4 = Wix | first4 = K. A. | last5 = Siderovski | first5 = D. P. | last6 = Setola | first6 = V. | title = Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants | journal = J. Psychopharmacol. | volume = 32 | issue = 2 | pages = 191–203 | year = 2018 | pmid = 29364035 | pmc = 5942192 | doi=10.1177/0269881117742100 }} References1. ^{{cite web|title=scholar.google.com|url=https://scholar.google.com/citations?user=mA-t-3UAAAAJ|website=scholar.google.com|accessdate=6 November 2016}} 2. ^{{cite web|title=WVU Centers for Neuroscience|url=http://www.hsc.wvu.edu/wvucn/home|website=WVU Centers for Neuroscience|accessdate=30 August 2015}} 3. ^{{cite web|title=Prince of Wales Prizes|url=http://www.queensu.ca/studentawards/automatic-awards-open-all-students|website=Automatic Awards Open to All Upper Year Students|publisher=Queen's University|accessdate=11 August 2015}} 4. ^{{cite book |author=Siderovski, David Peter |title=Human immunodeficiency virus type-1 trans-activator of transcription (HIV-1 Tat): Random mutagenesis and interaction with PKR |year=1997 |publisher=University of Toronto |url=http://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/tape16/PQDD_0004/NQ27724.pdf |accessdate=2015-08-04}} 5. ^{{cite web|title=Methods of modulating T-cell activation WO 1997041438 A1|url=https://www.google.com/patents/WO1997041438A1?dq=Siderovski|accessdate=9 August 2015}} 6. ^{{cite web|title=Apoptosis-inducing factor CA 2352467 A1|url=https://www.google.com/patents/CA2352467A1?dq=Siderovski&cl=en|accessdate=9 August 2015}} 7. ^{{cite web|title=Apoptosis-inducing factor CA 2352467 C|url=https://www.google.com/patents/CA2352467C?cl=en&dq=Siderovski&hl=en&sa=X&ved=0CB4Q6AEwAGoVChMIhJr6k-GaxwIVBnc-Ch18dgFE|accessdate=9 August 2015}} 8. ^{{Cite web|url=http://www.the-scientist.com/?articles.view/articleNo/24053/title/Can-You-Go-Home-Again-/|title=Can You Go Home Again? {{!}} The Scientist Magazine®|website=The Scientist|access-date=2016-06-09}} 9. ^1 2 {{cite journal |vauthors=Siderovski DP, Hessel A, Chung S, Mak TW, Tyers M | title = A new family of regulators of G-protein-coupled receptors? | journal = Curr Biol | volume = 6 | issue = 2 | pages = 211–2 | date = February 1996 | pmid = 8673468 | pmc = | doi = 10.1016/S0960-9822(02)00454-2}} 10. ^1 {{cite journal |vauthors=Snow BE, Antonio L, Suggs S, Gutstein HB, Siderovski DP | title = Molecular cloning and expression analysis of rat Rgs12 and Rgs14 | journal = Biochem Biophys Res Commun | volume = 233 | issue = 3 | pages = 770–7 | date = April 1997 | pmid = 9168931 | pmc = | doi = 10.1006/bbrc.1997.6537}} 11. ^{{cite journal |vauthors=Snow BE, Antonio L, Suggs S, Siderovski DP | title = Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene | journal = Gene | volume = 206 | issue = 2 | pages = 247–53 | date = January 1998 | pmid = 9469939 | pmc = | doi = 10.1016/s0378-1119(97)00593-3}} 12. ^{{cite journal |vauthors=Siderovski DP, Strockbine B, Behe CI | title = Whither goest the RGS proteins? | journal = Crit Rev Biochem Mol Biol | volume = 34 | issue = 4 | pages = 215–51 | pmid = 10517644 | pmc = | doi = 10.1080/10409239991209273 | year=1999}} 13. ^1 2 {{cite journal |vauthors=Snow BE, Hall RA, Krumins AM, Brothers GM, Bouchard D, Brothers CA, Chung S, Mangion J, Gilman AG, Lefkowitz RJ, Siderovski DP | title = GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain | journal = J Biol Chem | volume = 273 | issue = 28 | pages = 17749–55 | date = July 1998 | pmid = 9651375 | pmc = | doi = 10.1074/jbc.273.28.17749}} 14. ^1 2 {{cite journal |vauthors=Snow BE, Krumins AM, Brothers GM, Lee SF, Wall MA, Chung S, Mangion J, Arya S, Gilman AG, Siderovski DP | title = A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits | journal = Proceedings of the National Academy of Sciences of the United States of America| volume = 95 | issue = 22 | pages = 13307–12 | date = October 1998 | pmid = 9789084 | pmc = 23793| doi = 10.1073/pnas.95.22.13307| bibcode = 1998PNAS...9513307S }} 15. ^1 {{cite journal |vauthors=Ingi T, Krumins AM, Chidiac P, Brothers GM, Chung S, Snow BE, Barnes CA, Lanahan AA, Siderovski DP | title = Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity | journal = J Neurosci | volume = 18 | issue = 18 | pages = 7178–88 | date = September 1998 | pmid = 9736641 | pmc = | doi = 10.1523/JNEUROSCI.18-18-07178.1998|display-authors=etal}} 16. ^{{cite journal|last1=Siderovski|first1=DP|last2=Blum|first2=S|last3=Forsdyke|first3=RE|last4=Forsdyke|first4=DR|title=A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes|journal=DNA Cell Biol.|date=October 1990|volume=9|issue=8|pages=579–87|pmid=1702972|doi=10.1089/dna.1990.9.579}} 17. ^1 {{cite journal|last1=Siderovski|first1=DP|last2=Heximer|first2=SP|last3=Forsdyke|first3=DR|title=A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cyclohgeximide-treated blood mononuclear cells|journal=DNA Cell Biol.|date=February 1994|volume=13|issue=2|pages=125–47|pmid=8179820|doi=10.1089/dna.1994.13.125}} 18. ^{{cite journal|last1=Koelle|first1=MR|last2=Horvitz|first2=HR|title=EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins|journal=Cell|date=January 1996|volume=84|issue=1|pages=115–25|pmid=8548815|doi=10.1016/s0092-8674(00)80998-8}} 19. ^{{cite web|title=Donald R. Forsdyke, M.B., B. S., B. A., Ph.D|url=https://dbms.queensu.ca/faculty/forsdyke_donald_r|website=Forsdyke, Donald R.|publisher=Queen's University|accessdate=11 August 2015}} 20. ^{{cite journal|last1=Berstein|first1=G|last2=Blank|first2=JL|last3=Jhon|first3=DY|last4=Exton|first4=JH|last5=Rhee|first5=SG|last6=Ross|first6=EM|title=Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator|journal=Cell|date=August 1992|volume=70|issue=3|pages=411–8|pmid=1322796|doi=10.1016/0092-8674(92)90165-9}} 21. ^{{cite journal|last1=Neubig|first1=RR|last2=Siderovski|first2=DP|title=Regulators of G-protein signaling as new central nervous system drug targets|journal=Nat Rev Drug Discov|date=March 2002|volume=1|issue=3|pages=187–97|pmid=12120503|doi=10.1038/nrd747}} 22. ^{{cite journal|last1=Kimple|first1=AJ|last2=Bosch|first2=DE|last3=Giguere|first3=PM|last4=Siderovski|first4=DP|title=Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets|journal=Pharmacol. Rev.|date=September 2011|volume=63|issue=3|pages=728–49|pmid=21737532|doi=10.1124/pr.110.003038|pmc=3141876}} 23. ^{{cite web|last1=Siderovski|title=Citation Counts|url=https://scholar.google.com/citations?view_op=search_authors&mauthors=siderovski&hl=en&oi=ao|website=Google Scholar Citations|publisher=Google Scholar|accessdate=12 August 2015}} 24. ^{{cite book|last1=Siderovski|first1=David P.|title=Regulators of G-protein signalling, Part A|date=2004|publisher=Elsevier Academic Press|location=San Diego, CA.|isbn=978-0-12-182794-6|edition=Volume 389|url=http://www.elsevier.com/books/regulators-of-g-protein-signalling-part-a/siderovski/978-0-12-182794-6|accessdate=13 August 2015}} 25. ^{{cite book|last1=Siderovski|first1=David P.|title=Regulators of G-protein signalling, Part B|date=2004|publisher=Elsevier Academic Press|location=San Diego, CA.|isbn=978-0-12-182795-3|edition=Volume 390|url=http://www.elsevier.com/books/regulators-of-g-protein-signalling-part-b/siderovski/978-0-12-182795-3|accessdate=13 August 2015}} 26. ^{{cite journal|last1=Soundararajan|first1=M|last2=Willard|first2=FS|last3=Kimple|first3=AJ|last4=Turnbull|first4=AP|last5=Ball|first5=LJ|last6=Schoch|first6=GA|last7=Gileadi|first7=C|last8=Fedorov|first8=OY|last9=Dowler|first9=EF|last10=Higman|first10=VA|last11=Hutsell|first11=SQ|last12=Sundström|first12=M|last13=Doyle|first13=DA|last14=Siderovski|first14=DP|title=Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits|journal=Proceedings of the National Academy of Sciences of the United States of America|date=April 2008|volume=105|issue=17|pages=6457–62|pmid=18434541|pmc=2359823|doi=10.1073/pnas.0801508105|bibcode=2008PNAS..105.6457S}} 27. ^{{cite journal|last1=Kimple|first1=AJ|last2=Soundararajan|first2=M|last3=Hutsell|first3=SQ|last4=Roos|first4=AK|last5=Urban|first5=DJ|last6=Setola|first6=V|last7=Temple|first7=BR|last8=Roth|first8=BL|last9=Knapp|first9=S|last10=Willard|first10=FS|last11=Siderovski|first11=DP|title=Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2)|journal=J Biol Chem|date=July 2009|volume=284|issue=29|pages=19402–11|pmid=19478087|pmc=2740565|doi=10.1074/jbc.m109.024711}} 28. ^{{cite journal|last1=Oliveira-Dos-Santos|first1=AJ|last2=Matsumoto|first2=G|last3=Snow|first3=BE|last4=Bai|first4=D|last5=Houston|first5=FP|last6=Whishaw|first6=IQ|last7=Mariathasan|first7=S|last8=Sasaki|first8=T|last9=Wakeham|first9=A|last10=Ohashi|first10=PS|last11=Roder|first11=JC|last12=Barnes|first12=CA|last13=Siderovski|first13=DP|last14=Penninger|first14=JM|title=Regulation of T cell activation, anxiety, and male aggression by RGS2|journal=Proceedings of the National Academy of Sciences of the United States of America|date=October 2000|volume=97|issue=22|pages=12272–7|pmid=11027316|accessdate=|pmc=17331|doi=10.1073/pnas.220414397|bibcode=2000PNAS...9712272O}} 29. ^1 {{cite journal|last1=Heximer|first1=SP|last2=Knutsen|first2=RH|last3=Sun|first3=X|last4=Kaltenbronn|first4=KM|last5=Rhee|first5=MH|last6=Peng|first6=N|last7=Oliveira-Dos-Santos|first7=A|last8=Penninger|first8=JM|last9=Muslin|first9=AJ|last10=Steinberg|first10=TH|last11=Wyss|first11=JM|last12=Mecham|first12=RP|last13=Blumer|first13=KJ|title=Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice|journal=J Clin Invest|date=February 2003|volume=111|issue=4|pages=445–52|pmid=12588882|accessdate=|pmc=151918|doi=10.1172/jci15598}} 30. ^{{cite journal|last1=Tang|first1=KM|last2=Wang|first2=GR|last3=Lu|first3=P|last4=Karas|first4=RH|last5=Aronovitz|first5=M|last6=Heximer|first6=SP|last7=Kaltenbronn|first7=KM|last8=Blumer|first8=KJ|last9=Siderovski|first9=DP|last10=Zhu|first10=Y|last11=Mendelsohn|first11=ME|title=Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure|journal=Nat. Med.|date=December 2003|volume=9|issue=12|pages=1506–12|pmid=14608379|doi=10.1038/nm958}} 31. ^{{cite journal|last1=Tsang|first1=S|last2=Woo|first2=AY|last3=Zhu|first3=W|last4=Xiao|first4=RP|title=Deregulation of RGS2 in cardiovascular diseases|journal=Front. Biosci.|date=January 2010|volume=2|issue=2|pages=547–57|pmid=20036967|accessdate=|pmc=2815333|doi=10.2741/s84}} 32. ^1 {{Cite journal|last=Willard|first=Melinda D.|last2=Willard|first2=Francis S.|last3=Li|first3=Xiaoyan|last4=Cappell|first4=Steven D.|last5=Snider|first5=William D.|last6=Siderovski|first6=David P.|date=2007-04-18|title=Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation|journal=The EMBO Journal|volume=26|issue=8|pages=2029–2040|doi=10.1038/sj.emboj.7601659|issn=0261-4189|pmc=1852785|pmid=17380122}} 33. ^{{Cite journal|last=Willard|first=Francis S.|last2=Willard|first2=Melinda D.|last3=Kimple|first3=Adam J.|last4=Soundararajan|first4=Meera|last5=Oestreich|first5=Emily A.|last6=Li|first6=Xiaoyan|last7=Sowa|first7=Nathaniel A.|last8=Kimple|first8=Randall J.|last9=Doyle|first9=Declan A.|date=2009|title=Regulator of G-protein signaling 14 (RGS14) is a selective H-Ras effector|journal=PLOS One|volume=4|issue=3|pages=e4884|doi=10.1371/journal.pone.0004884|issn=1932-6203|pmc=2655719|pmid=19319189}} 34. ^1 2 {{Cite journal|last=Gross|first=Joshua D.|last2=Kaski|first2=Shane W.|last3=Schroer|first3=Adam B.|last4=Wix|first4=Kimberley A.|last5=Siderovski|first5=David P.|last6=Setola|first6=Vincent|date=February 2018|title=Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants|journal=Journal of Psychopharmacology (Oxford, England)|volume=32|issue=2|pages=191–203|doi=10.1177/0269881117742100|issn=1461-7285|pmc=5942192|pmid=29364035}} 35. ^{{cite journal|last1=Siderovski|first1=DP|last2=Diversé-Pierluissi|first2=Ma|last3=De Vries|first3=L|title=The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor.|journal=Trends in Biochemical Sciences|date=September 1999|volume=24|issue=9|pages=340–1|pmid=10470031|doi=10.1016/s0968-0004(99)01441-3}} 36. ^{{cite journal|last1=Kimple|first1=RJ|last2=Kimple|first2=ME|last3=Betts|first3=L|last4=Sondek|first4=J|last5=Siderovski|first5=DP|title=Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits.|journal=Nature|date=25 April 2002|volume=416|issue=6883|pages=878–81|pmid=11976690|doi=10.1038/416878a|bibcode=2002Natur.416..878K}} 37. ^{{cite journal|last1=Colombo|first1=K|last2=Grill|first2=SW|last3=Kimple|first3=RJ|last4=Willard|first4=FS|last5=Siderovski|first5=DP|last6=Gönczy|first6=P|title=Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos.|journal=Science|date=20 June 2003|volume=300|issue=5627|pages=1957–61|pmid=12750478|doi=10.1126/science.1084146|bibcode=2003Sci...300.1957C}} 38. ^{{cite journal|last1=Afshar|first1=K|last2=Willard|first2=FS|last3=Colombo|first3=K|last4=Johnston|first4=CA|last5=McCudden|first5=CR|last6=Siderovski|first6=DP|last7=Gönczy|first7=P|title=RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos.|journal=Cell|date=15 October 2004|volume=119|issue=2|pages=219–30|pmid=15479639|doi=10.1016/j.cell.2004.09.026}} 39. ^{{cite journal|last1=Willard|first1=FS|last2=Kimple|first2=RJ|last3=Siderovski|first3=DP|title=Return of the GDI: the GoLoco motif in cell division.|journal=Annual Review of Biochemistry|date=2004|volume=73|pages=925–51|pmid=15189163|doi=10.1146/annurev.biochem.73.011303.073756}} 40. ^{{Cite journal|last=Gall|first=BJ|last2=Wilson|first2=A|last3=Schroer|first3=AB|last4=Gross|first4=JD|last5=Stoilov|first5=P|last6=Setola|first6=V|last7=Watkins|first7=CM|last8=Siderovski|first8=DP|date=2016|title=Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance|journal=Genes and Immunity|volume=17|issue=2|pages=139–147|doi=10.1038/gene.2016.3|issn=1466-4879|pmc=4777669|pmid=26821282}} 41. ^{{Cite journal|last=Gall|first=BJ|last2=Schroer|first2=AB|last3=Gross|first3=JD|last4=Setola|first4=V|last5=Siderovski|first5=DP|date=2016|title=Reduction of GPSM3 expression akin to the arthritis-protective SNP rs204989 differentially affects migration in a neutrophil model|journal=Genes and Immunity|volume=17|issue=6|pages=321–327|doi=10.1038/gene.2016.26|issn=1466-4879|pmc=5009006|pmid=27307211}} 42. ^{{Cite journal|last=Siderovski|first=David P.|last2=Willard|first2=Francis S.|date=2005|title=The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits|journal=International Journal of Biological Sciences|volume=1|issue=2|pages=51–66|issn=1449-2288|pmc=1142213|pmid=15951850}} 43. ^{{Cite journal|last=Gilman|first=A G|date=June 1987|title=G Proteins: Transducers of Receptor-Generated Signals|journal=Annual Review of Biochemistry|volume=56|issue=1|pages=615–649|doi=10.1146/annurev.bi.56.070187.003151|pmid=3113327|issn=0066-4154}} 44. ^{{Cite journal|last=Snow|first=B. E.|last2=Betts|first2=L.|last3=Mangion|first3=J.|last4=Sondek|first4=J.|last5=Siderovski|first5=D. P.|date=1999-05-25|title=Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=96|issue=11|pages=6489–6494|issn=0027-8424|pmc=26909|pmid=10339615|doi=10.1073/pnas.96.11.6489}} 45. ^{{Cite journal|last=Sondek|first=J.|last2=Siderovski|first2=D. P.|date=2001-06-01|title=Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding|journal=Biochemical Pharmacology|volume=61|issue=11|pages=1329–1337|issn=0006-2952|pmid=11331068|doi=10.1016/S0006-2952(01)00633-5}} 46. ^{{Cite journal|last=Sprang|first=Stephen R.|date=June 1997|title=G PROTEIN MECHANISMS:Insights from Structural Analysis|journal=Annual Review of Biochemistry|volume=66|issue=1|pages=639–678|doi=10.1146/annurev.biochem.66.1.639|pmid=9242920|issn=0066-4154}} 47. ^{{Cite journal|last=Jones|first=Miller B.|last2=Siderovski|first2=David P.|last3=Hooks|first3=Shelley B.|date=August 2004|title=The G betagamma dimer as a novel source of selectivity in G-protein signaling: GGL-ing at convention|journal=Molecular Interventions|volume=4|issue=4|pages=200–214|doi=10.1124/mi.4.4.4|issn=1543-2548|pmid=15304556}} 48. ^{{Cite journal|last=Chen|first=Jin-Gui|last2=Willard|first2=Francis S.|last3=Huang|first3=Jirong|last4=Liang|first4=Jiansheng|last5=Chasse|first5=Scott A.|last6=Jones|first6=Alan M.|last7=Siderovski|first7=David P.|date=2003-09-19|title=A seven-transmembrane RGS protein that modulates plant cell proliferation|journal=Science|volume=301|issue=5640|pages=1728–1731|doi=10.1126/science.1087790|issn=1095-9203|pmid=14500984|bibcode=2003Sci...301.1728C}} 49. ^{{Cite journal|last=Johnston|first=Christopher A.|last2=Taylor|first2=J. Philip|last3=Gao|first3=Yajun|last4=Kimple|first4=Adam J.|last5=Grigston|first5=Jeffrey C.|last6=Chen|first6=Jin-Gui|last7=Siderovski|first7=David P.|last8=Jones|first8=Alan M.|last9=Willard|first9=Francis S.|date=2007-10-30|title=GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=104|issue=44|pages=17317–17322|doi=10.1073/pnas.0704751104|issn=0027-8424|pmc=2077254|pmid=17951432|bibcode=2007PNAS..10417317J}} 50. ^{{Cite journal|last=Johnston|first=Christopher A|last2=Willard|first2=Melinda D|last3=Kimple|first3=Adam J|last4=Siderovski|first4=David P|last5=Willard|first5=Francis S|date=2008|title=A sweet cycle for Arabidopsis G-proteins|journal=Plant Signaling & Behavior|volume=3|issue=12|pages=1067–1076|issn=1559-2316|pmc=2634461|pmid=19513240|doi=10.4161/psb.3.12.7184}} 51. ^{{cite journal|last1=von Buchholtz|first1=L|last2=Elischer|first2=A|last3=Tareilus|first3=E|last4=Gouka|first4=R|last5=Kaiser|first5=C|last6=Breer|first6=H|last7=Conzelmann|first7=S|title=RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells|journal=Eur J Neurosci|date=March 2004|volume=19|issue=6|pages=1535–44|pmid=15066150|doi=10.1111/j.1460-9568.2004.03257.x}} 52. ^{{cite journal|last1=Cohen|first1=SP|last2=Buckley|first2=BK|last3=Kosloff|first3=M|last4=Garland|first4=AL|last5=Bosch|first5=DE|last6=Cheng|first6=G Jr|last7=Radhakrishna|first7=H|last8=Brown|first8=MD|last9=Willard|first9=FS|last10=Arshavsky|first10=VY|last11=Tarran|first11=R|last12=Siderovski|first12=DP|last13=Kimple|first13=AJ|title=Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia|journal=J Biol Chem|date=December 2012|volume=287|issue=50|pages=41706–19|pmid=23095746|accessdate=|pmc=3516720|doi=10.1074/jbc.m112.423806}} 53. ^{{cite web|url=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9,128,079.PN.&OS=PN/9,128,079&RS=PN/9,128,079|title=Methods of using lung or bronchial epithelial cells to identify bitter taste modulators|last=|first=|date=|website=United States Patent 9,128,079|publisher=US Patent & Trademark Office|archive-url=|archive-date=|dead-url=|accessdate=1 September 2017}} 54. ^{{Cite journal|last=Schroer|first=Adam B.|last2=Gross|first2=Joshua D.|last3=Kaski|first3=Shane W.|last4=Wix|first4=Kim|last5=Siderovski|first5=David P.|last6=Vandenbeuch|first6=Aurelie|last7=Setola|first7=Vincent|title=Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21)|journal=Chemical Senses|volume=43|issue=5|pages=367–378|doi=10.1093/chemse/bjy024|pmid=29701767|pmc=6276893|date=2018-05-23}} 55. ^{{Cite journal|last=Schroer|first=Adam B.|last2=Gross|first2=Joshua D.|last3=Kaski|first3=Shane W.|last4=Wix|first4=Kim|last5=Siderovski|first5=David P.|last6=Vandenbeuch|first6=Aurelie|last7=Setola|first7=Vincent|date=2018-05-23|title=Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21)|journal=Chemical Senses|volume=43|issue=5|pages=367–378|doi=10.1093/chemse/bjy024|issn=1464-3553|pmc=6276893|pmid=29701767}} 56. ^{{Cite journal|last=Cohen|first=Staci P.|last2=Buckley|first2=Brian K.|last3=Kosloff|first3=Mickey|last4=Garland|first4=Alaina L.|last5=Bosch|first5=Dustin E.|last6=Cheng|first6=Gang|last7=Radhakrishna|first7=Harish|last8=Brown|first8=Michael D.|last9=Willard|first9=Francis S.|date=2012-12-07|title=Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia|journal=The Journal of Biological Chemistry|volume=287|issue=50|pages=41706–41719|doi=10.1074/jbc.M112.423806|issn=1083-351X|pmc=3516720|pmid=23095746}} 57. ^{{Cite journal|last=Kimple|first=Adam J.|last2=Garland|first2=Alaina L.|last3=Cohen|first3=Staci P.|last4=Setola|first4=Vincent|last5=Willard|first5=Francis S.|last6=Zielinski|first6=Thomas|last7=Lowery|first7=Robert G.|last8=Tarran|first8=Robert|last9=Siderovski|first9=David P.|date=March 2014|title=RGS21, a regulator of taste and mucociliary clearance?|journal=The Laryngoscope|volume=124|issue=3|pages=E56–63|doi=10.1002/lary.24326|issn=1531-4995|pmc=3985343|pmid=23908053}} 58. ^1 {{Cite journal|last=Bosch|first=Dustin E|last2=Siderovski|first2=David P|date=March 2013|title=G protein signaling in the parasite Entamoeba histolytica|journal=Experimental & Molecular Medicine|volume=45|issue=3|pages=e15|doi=10.1038/emm.2013.30|pmid=23519208|pmc=3641396|issn=2092-6413}} 59. ^{{Cite journal|last=Bosch|first=Dustin E.|last2=Yang|first2=Bing|last3=Siderovski|first3=David P.|date=2012-11-06|title=Entamoeba histolytica Rho1 regulates actin polymerization through a divergent, diaphanous-related formin|journal=Biochemistry|volume=51|issue=44|pages=8791–8801|doi=10.1021/bi300954g|issn=1520-4995|pmc=3491106|pmid=23050667}} 60. ^{{Cite journal|last=Bosch|first=Dustin E.|last2=Kimple|first2=Adam J.|last3=Manning|first3=Alyssa J.|last4=Muller|first4=Robin E.|last5=Willard|first5=Francis S.|last6=Machius|first6=Mischa|last7=Rogers|first7=Stephen L.|last8=Siderovski|first8=David P.|date=2013-01-08|title=Structural determinants of RGS-RhoGEF signaling critical to Entamoeba histolytica pathogenesis|journal=Structure|volume=21|issue=1|pages=65–75|doi=10.1016/j.str.2012.11.012|issn=1878-4186|pmc=3545058|pmid=23260656}} 61. ^{{Cite journal|last=Bosch|first=Dustin E.|last2=Kimple|first2=Adam J.|last3=Muller|first3=Robin E.|last4=Giguère|first4=Patrick M.|last5=Machius|first5=Mischa|last6=Willard|first6=Francis S.|last7=Temple|first7=Brenda R. S.|last8=Siderovski|first8=David P.|date=2012|title=Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica|journal=PLoS Pathogens|volume=8|issue=11|pages=e1003040|doi=10.1371/journal.ppat.1003040|issn=1553-7374|pmc=3499586|pmid=23166501}} 62. ^{{cite web|title=Leadership |url=http://www.med.unc.edu/mdphd/fps/leadership |website=UNC MD-PhD Program (circa March 24, 2012) |publisher=Internet Archive Wayback Machine |accessdate=12 August 2015 |deadurl=yes |archiveurl=https://web.archive.org/web/20120324031923/http://www.med.unc.edu/mdphd/fps/leadership |archivedate=March 24, 2012 }} 63. ^{{cite web|title=Siderovski Chosen to Oversee M.D./PH.D. Scholars Program|url=http://medicine.hsc.wvu.edu/news/story?headline=siderovski-chosen-to-oversee-m-d-ph-d-scholars-program|website=School of Medicine > Home > News > Story|publisher=WVU School of Medicine|accessdate=13 August 2015}} 64. ^{{Cite news|url=https://www.hsc.wvu.edu/news/story?headline=wvctsi-scientists-participating-in-addiction-roundtable|title=West Virginia University Health Sciences|last=|first=|date=20 October 2016|work=|access-date=|archive-url=|archive-date=|dead-url=}} 65. ^{{Cite web|url=https://apps.asbmb.org/jbcboard/Default.aspx?SearchPhrase=siderovski|title=JBC Editorial Board|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}} 66. ^{{cite news |author=Burroughs Wellcome Fund |date=2001 |title=Burroughs Wellcome Fund 2001 Annual Report |publisher=Burroughs Wellcome Fund |url=http://www.bwfund.org/sites/default/files/media/files/2001%20Annual%20Report.pdf |accessdate=2015-08-07}} 67. ^{{cite news|author=ASPET |date=2004-01-01 |title=ASPET Award Winners for 2004 |publisher=ASPET |url=https://www.aspet.org/uploadedFiles/Awards_and_Fellowships/ASPET_Awards/AwardWinners-2004.pdf |accessdate=2015-08-04 |deadurl=yes |archiveurl=https://web.archive.org/web/20150626174243/https://www.aspet.org/uploadedFiles/Awards_and_Fellowships/ASPET_Awards/AwardWinners-2004.pdf |archivedate=2015-06-26 }} 68. ^{{cite news|author=UNC Gazette |date=2006-09-27 |title=Four faculty awarded Hettleman Prizes for artistic, scholarly achievement |publisher=UNC University Gazette |url=http://gazette.unc.edu/archives/06sep27/file.3.html |accessdate=2015-08-07 |deadurl=yes |archiveurl=https://web.archive.org/web/20100612123021/http://gazette.unc.edu/archives/06sep27/file.3.html |archivedate=2010-06-12 }} 69. ^{{Cite news|url=http://www.med.unc.edu/pharm/news/faculty-news/department-says-goodbye-to-david-siderovski|title=Department says farewell to David Siderovski|last=|first=|date=|website=www.med.unc.edu/pharm/news/faculty-news/department-says-goodbye-to-david-siderovski|archive-url=|archive-date=|dead-url=|access-date=}} External links
6 : 1966 births|Living people|Queen's University alumni|American pharmacologists|West Virginia University faculty|People from Toronto |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。