词条 | Dieudonné's theorem |
释义 |
In mathematics, Dieudonné's theorem, named after Jean Dieudonné, is a theorem on when the Minkowski sum of closed sets is closed. Statement of theoremLet nonempty closed convex sets a locally convex space, if either or is locally compact and (where gives the recession cone) is a linear subspace, then is closed.[1][2] References1. ^{{cite journal|title=Sur la séparation des ensembles convexes|author=J. Dieudonné|year=1966|journal=Math. Ann.|volume=163}} {{DEFAULTSORT:Dieudonne's theorem}}{{topology-stub}}2. ^{{cite book |last=Zălinescu |first=Constantin |title=Convex analysis in general vector spaces |publisher=World Scientific Publishing Co., Inc. |isbn=981-238-067-1 |mr=1921556 |issue=J |year=2002 |location=River Edge, NJ |pages=6–7}} 2 : Convex analysis|Theorems in functional analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。