词条 | Distribution of lightning |
释义 |
The distribution of lightning, or the incidence of individual strikes, in any particular place is highly variable{{clarify|date=July 2018}}{{Fix|text=variable over time, or what?}}, but lightning does have an underlying spatial distribution. High quality lightning data has only recently become available, but the data indicates that lightning occurs on average 44 (± 5) times every second over the entire Earth, making a total of about 1.4 billion flashes per year.[1][2] Ratios of lightning typesThe lightning flash rate averaged over the Earth for intra-cloud (IC) + cloud-to-cloud (CC) to cloud-to-ground (CG) is in the ratio: (IC+CC):CG = 3:1. The base of the negative region in a cloud is normally at roughly the elevation where freezing occurs. The closer this region is to the ground, the more likely cloud-to-ground strikes are. In the tropics, where the freeze zone is higher, the (IC+CC):CG ratio is about 9:1. In Norway, at latitude 60° N, where the freezing elevation is lower, the (IC+CC):CG ratio is about 1:1.[3][4] DistributionThe map on the right shows that lightning is not distributed evenly around the planet.[5] About 70% of lightning occurs on land in the Tropics, where the majority of thunderstorms occur. The North and South Poles and the areas over the oceans have the fewest lightning strikes. The place where lightning occurs most often (according to the data from 2004 to 2005) {{Fix|text=needs updating}} is near the small village of Kifuka in the mountains of eastern Democratic Republic of the Congo,[6] where the elevation is around {{convert|975|m|ft|-2}}. This region received 158 lightning strikes per square kilometer (409 per sq mi) a year.[2] Above the Catatumbo river, which feeds Lake Maracaibo in Venezuela, Catatumbo lightning flashes several times per minute and this place has the highest number of lightning strikes per square kilometer in the world. Singapore has one of the highest rates of lightning activity in the world.[7] The city of Teresina in northern Brazil has the third-highest rate of occurrences of lightning strikes in the world. The surrounding region is referred to as the Chapada do Corisco ("Flash Lightning Flatlands").[8] In the United States, the west coast has the fewest lightning strikes, and Florida sees more lightning than any other area; In 2018, 14 Florida counties ranked in the top 15 counties in the United States for having the highest lightning density.[9] Florida has the largest number of recorded strikes during summer.{{cn|date=January 2019}} Much of Florida is a peninsula, bordered by the ocean on three sides with a subtropical climate. The result is the nearly daily development of clouds that produce thunderstorms. For example, "Lightning Alley"—an area from Tampa to Orlando—experiences an extremely high density of lightning strikes. As of 2007, there were as many as 50 strikes per square mile (about 20 per km2) per year.[10][11] In their 2018 Annual Lightning Report, Vaisala reported there were as many as 24 strikes per square mile (about 9 per km2) per year in Florida.[9] The Empire State Building in New York City is struck by lightning on average 23 times each year, and was once struck 8 times in 24 minutes.[12] {{Clear}}Lightning data sourcesBefore technology was developed to accurately detect and record lightning flashes, climatologies were based upon the number of audible detection of thunder. The keraunic (or ceraunic) level was the average number of days per year when thunder was heard in a given area. A map of isokeraunic contours was used to give a rough estimate of relative lightning frequencies. However, variations in population, the distance sound travels due to terrain made such maps quite spurious, and human hearing made such maps imprecise. It also could not hope to differentiate between different types of lightning. Electronic lightning sensors advanced during the 20th century using radio wave disruptions. Originally the expense of such instruments caused only sporadic development. However a small set of sensors in the U.S. employed during a 1979 project by NOAA’s National Severe Storms Laboratory grew by bits and pieces into the National Lightning Detection Network (NLDN), achieving nationwide coverage in 1989.[13] Vaisala is now the operator and primary distributor of data from the NLDN, and developed the Canadian Lightning Detection Network (CLDN) as of 1998.[14] The EUCLID network is the European shared network, covering most of the continent apart from some far eastern nations.[15] Collaborative amateur development spurred the formation of the Blitzortung community, which offers real-time lightning strike data from most of the world (as well as historical data dating back to 2008) under the Creative Commons license.[16] Satellite lightning measurements began in 1997 when NASA and National Space Development Agency (NASDA) of Japan launched the Lightning Imaging Sensor (LIS) aboard the aboard the TRMM satellite, providing periodic scan swaths over tropical and sub-tropical portions of the globe until the satellite's was lost in 2015. In 2017 NOAA started deployment of Geostationary Lightning Mappers aboard their GOES-R class satellites, offering continual coverage of much of the land within the western Hemisphere. Maps of the U.S. lightning strike/km2yr averaged from 1997-2010 are available from Vaisala's webpage for a fee.[17] More detailed U.S. regional lightning maps based on the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) data centered on different cities are put out by the Cooperative Institute for Applied Meteorological Studies at Texas A&M University.[18] References1. ^{{cite book|url=https://books.google.com/books?id=-mwbAsxpRr0C&pg=PA452|title=Encyclopedia of World Climatology |accessdate=February 8, 2009|publisher=National Oceanic and Atmospheric Administration|author=John E. Oliver | isbn=978-1-4020-3264-6|year=2005}} 2. ^1 {{cite web|url=http://www.sos.noaa.gov/Datasets/dataset.php?id=6|title=Annual Lightning Flash Rate |accessdate=January 15, 2013|publisher=National Oceanic and Atmospheric Administration}} 3. ^{{cite web|url=https://science.nasa.gov/science-news/science-at-nasa/2001/ast05dec_1/|date=2001-12-05|title=Where LightningStrikes|publisher=NASA Science. Science News.|accessdate=July 5, 2010}} 4. ^Uman, Martin A.' "All About Lightning"; Ch. 8; p. 68, Dover Publications N.Y.; 1986; {{ISBN|9780486252377}} 5. ^{{cite web|url=http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/EASA.2008_5.pdf |date=November 2010 |title=Hail Threat Standardisation |author1=P.R. Field |author2=W.H. Hand |author3=G. Cappelluti |display-authors=etal |publisher=European Aviation Safety Agency. RP EASA.2008/5 |deadurl=yes |archiveurl=https://web.archive.org/web/20131207052634/http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/EASA.2008_5.pdf |archivedate=2013-12-07 |df= }} 6. ^{{cite web|url=http://www.wondermondo.com/Countries/Af/CongoDR/SudKivu/Kifuka.htm|title=Kifuka – place where lightning strikes most often |accessdate=November 21, 2010|publisher=Wondermondo}} 7. ^{{cite web|url=http://app.nea.gov.sg/cms/htdocs/article.asp?pid=1203 |title=Lightning Activity in Singapore |accessdate=September 24, 2007 |publisher=National Environmental Agency |year=2002 |author=National Environmental Agency |deadurl=yes |archiveurl=https://web.archive.org/web/20070927224804/http://app.nea.gov.sg/cms/htdocs/article.asp?pid=1203 |archivedate=September 27, 2007 |df= }} 8. ^{{cite web|url=http://www.paesionline.com/south_america/brazil/teresina/introduction.asp|title=Teresina: Vacations and Tourism|accessdate=September 24, 2007|publisher=Paesi Online|author=Paesi Online}} 9. ^1 {{cite web|url=https://www.vaisala.com/sites/default/files/documents/2018%20Annual%20Lightning%20Report_1.pdf|title= Vaisala 2018 Annual Lightning Report|accessdate=January 9, 2019|publisher=Vaisala|year=2019|author=Vaisala|authorlink=Vaisala}} 10. ^{{cite web|url=http://www.nasa.gov/centers/kennedy/news/lightning_alley.html|title=Staying Safe in Lightning Alley|accessdate=September 24, 2007|publisher=NASA|year=2007|author=NASA|authorlink=NASA}} 11. ^{{cite web|url=http://www.floridaenvironment.com/programs/fe00703.htm |title=Summer Lightning Ahead |accessdate=September 24, 2007 |publisher=Florida Environment.com |year=2000 |author=Kevin Pierce |deadurl=yes |archiveurl=https://web.archive.org/web/20071012160959/http://floridaenvironment.com/programs/fe00703.htm |archivedate=October 12, 2007 |df= }} 12. ^Uman, Martin A.' "All About Lightning"; Ch. 6, p. 47, Dover Publications N.Y.; 1986; {{ISBN|9780486252377}} 13. ^{{cite journal |last1=Orville |first1=Richard |title=Development of the National Lightning Detection Network |journal=Bulletin of the American Meteorological Society |date=February 2008 |volume=89 |issue=2 |pages=180–190 |bibcode=2008BAMS...89..180O |doi=10.1175/BAMS-89-2-180 }} 14. ^https://www.vaisala.com/sites/default/files/documents/CLDN%20Brochure%20B210413EN-a.pdf 15. ^http://www.euclid.org 16. ^http://en.blitzortung.org/contact.php 17. ^VAISALA US lightning strike density map Accessed 13 Jul 2017 18. ^U.S. regional lightning strike maps Accessed 30 Jul 2012 External links
2 : Lightning|Meteorology and climate education |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。