请输入您要查询的百科知识:

 

词条 Drinfeld upper half plane
释义

  1. References

In mathematics, the Drinfeld upper half plane is a rigid analytic space analogous to the usual upper half plane for function fields, introduced by {{harvs|txt|authorlink=Vladimir Drinfeld|last=Drinfeld|year=1976}}.

It is defined to be P1(C)\\P1(F), where F is a function field of a curve over a finite field, F its completion at ∞, and C the completion of the algebraic closure of F.

The analogy with the usual upper half plane arises from the fact that the global function field F is analogous to the rational numbers Q. Then, F is the real numbers R and the algebraic closure of F is the complex numbers C (which are already complete). Finally, P1(C) is the Riemann sphere, so P1(C)\\P1(R) is the upper half plane together with the lower half plane.

References

  • {{Citation | last1=Drinfeld | first1=V. G. | title=Coverings of p-adic symmetric domains | mr=0422290 | year=1976 | journal=Akademija Nauk SSSR. Funkcional'nyi Analiz i ego Priloženija | issn=0374-1990 | volume=10 | issue=2 | pages=29–40}}
  • {{Citation | last1=Genestier | first1=Alain | title=Espaces symétriques de Drinfeld | mr=1393015 | year=1996 | journal=Astérisque | issn=0303-1179 | issue=234 | pages=124}}
{{mathanalysis-stub}}

1 : Automorphic forms

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 18:23:10