词条 | Esenin-Volpin's theorem |
释义 |
In mathematics, Esenin-Volpin's theorem states that weight of an infinite compact dyadic space is the supremum of the weights of its points. It was introduced by {{harvs|txt|authorlink=Alexander Esenin-Volpin|first= Alexander|last= Esenin-Volpin|year=1949}}. It was generalized by {{harv|Efimov|1965}} and {{harv|Turzański|1992}}. References
|last=Efimov|first= B. A. |title=Dyadic bicompacta|language=Russian |journal=Trudy Moskov. Mat. Obšč. |volume=14 |year=1965|pages= 211–247}}
|last=Esenin-Volpin|first= A. S. |title=On the relation between the local and integral weight in dyadic bicompacta|language=Russian |journal=Doklady Akademii Nauk SSSR (N.S.) |volume=68|year=1949|pages= 441–444}}
| url=https://eudml.org/doc/247365 |last=Turzański|first= Marian}}{{DEFAULTSORT:Esenin-Volpin's theorem}} 2 : General topology|Theorems in topology |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。