请输入您要查询的百科知识:

 

词条 Exciton-polaritons
释义

  1. Overview

  2. Theory

  3. Other features

  4. See also

  5. References

  6. External links

{{Multiple issues|{{context|date=January 2012}}{{technical|date=January 2012}}
}}

Overview

Exciton-polaritons are a type of polaritons, hybrid light and matter quasiparticles arising from the strong coupling of the electromagnetic dipolar oscillations of excitons (either in bulk or quantum wells) and photons.[1]

Theory

The coupling of the two oscillators, photons modes in the semiconductor optical microcavity and excitons of the quantum wells, results in the energy anticrossing of the bare oscillators, giving rise to the two new normal modes for the system, known as the upper and lower polariton resonances (or branches). The energy shift is proportional to the coupling strength (dependent, e.g., on the field and polarization overlaps). The higher energy or upper mode (UPB, upper polariton branch) is characterized by the photonic and exciton fields oscillating in-phase, while the LPB (lower polariton branch) mode is characterized by them oscillating with phase-opposition. Microcavity exciton-polaritons inherit some properties from both of their roots, such as a light effective mass (from the photons) and a capacity to interact with each other (from the strong exciton nonlinearities) and with the environment (including the internal phonons, which provide thermalization, and the outcoupling by radiative losses). In most cases the interactions are repulsive, at least between polariton quasi-particles of the same spin type (intra-spin interactions) and the nonlinearity term is positive (increase of total energy, or blueshift, upon increasing density).[2]

Other features

Polaritons are also characterized by non-parabolic energy-momentum dispersion relations, which limit the validity of the parabolic effective-mass approximation to a small range of momenta

[3].

They also have a spin degree-of-freedom, making them spinorial fluids able to sustain different polarization textures. Exciton-polaritons are composite bosons which can be observed to form Bose-Einstein condensates,[4][5][6][7]

and sustain polariton superfluidity and quantum vortices[8]

and are prospected for emerging technological applications.[9]

Many experimental works currently focus on polariton lasers,[10] optically addressed transistors,[11] nonlinear states such as solitons and shock waves, long-range coherence properties and phase transitions, quantum vortices and spinorial patterns. Modelization of exciton-polariton fluids mainly rely on the use of GPE (Gross–Pitaevskii equations) which are in the form of nonlinear Schrödinger equations.[12]

See also

  • Polariton superfluid
  • Bose-Einstein condensation of polaritons
  • Bose-Einstein condensation of quasiparticles

References

1. ^{{Cite journal |author=S.I. Pekar |title=Theory of electromagnetic waves in a crystal with excitons |journal=Journal of Physics and Chemistry of Solids |volume=5 |issue=1–2 |pages=11–22 |year=1958 |doi=10.1016/0022-3697(58)90127-6|bibcode=1958JPCS....5...11P }}
2. ^{{Cite journal |title=Polariton-polariton interaction constants in microcavities |journal=Physical Review B |volume=82 |issue=7 |pages=075301 |year=2010 |last1=Vladimirova |first1=M |display-authors=etal |doi=10.1103/PhysRevB.82.075301 |bibcode=2010PhRvB..82g5301V }}
3. ^{{Cite journal |url=|title=Effects of the non-parabolic kinetic energy on non-equilibrium polariton condensates |author1=Pinsker, F. |author2=Ruan, X. |author3=Alexander, T. |journal=Scientific Reports |volume=7 |issue=1891 |pages=1891 |year=2017 |doi=10.1038/s41598-017-01113-8 |pmid=28507290 |pmc=5432531 |arxiv=1606.02130 |bibcode=2017NatSR...7.1891P}}
4. ^{{Cite journal |url=|title=Condensation of semiconductor microcavity exciton polaritons |last=Deng |first=H |journal=Science |volume=298 |issue=5591 |pages=199–202 |year=2002 |doi=10.1126/science.1074464 |pmid=12364801 |bibcode=2002Sci...298..199D }}
5. ^{{Cite journal |url=|title=Bose–Einstein condensation of exciton polaritons |last=Kasprzak |first=J |journal=Nature |volume=443 |issue=7110 |pages=409–14 |year=2006 |doi=10.1038/nature05131 |pmid=17006506 |bibcode=2006Natur.443..409K }}
6. ^{{Cite journal |url=|title=Exciton-polariton Bose-Einstein condensation |last=Deng |first=H |journal=Reviews of Modern Physics |volume=82 |issue=2 |pages=1489-1537 |year=2010 |doi=10.1103/RevModPhys.82.1489 |bibcode=2010RvMP...82.1489D }}
7. ^{{Cite journal |url=|author1=Byrnes, T. |author2=Kim, N. Y. |author3=Yamamoto, Y. |title=Exciton–polariton condensates |journal=Nature Physics |volume=10 |issue=11 |pages=803 |year=2014 |doi=10.1038/nphys3143 |arxiv=1411.6822 |bibcode=2014NatPh..10..803B }}
8. ^{{Cite journal |title=Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid |url=http://advances.sciencemag.org/content/advances/1/11/e1500807.full.pdf |last1=Dominici |first1=L |last2=Dagvadorj |first2=G |last3=Fellows |first3=JM |display-authors=etal |year=2015 |journal=Science Advances |volume=1 |issue=11 |pages=e1500807 |doi=10.1126/sciadv.1500807 |doi-access=free |pmid=26665174 |pmc=4672757 |bibcode=2015SciA....1E0807D |arxiv=1403.0487 }}
9. ^{{Cite journal|last1=Sanvitto |first1=D. |last2=Kéna-Cohen |first2=S. |title=The road towards polaritonic devices |journal=Nature Materials |volume=15 |issue=10 |pages=1061-73 |year=2016 |doi=10.1038/nmat4668|pmid=27429208 |bibcode=2016NatMa..15.1061S }}
10. ^{{cite journal |author1=Schneider, C. |author2=Rahimi-Iman, A. |author3=Kim, N. Y. |display-authors=etal |title=An electrically pumped polariton laser |journal=Nature |year=2013 |volume=497 |issue=7449 |pages=348–352 |doi=10.1038/nature12036 |pmid=23676752 |bibcode=2013Natur.497..348S }}
11. ^{{Cite journal |title=All-optical polariton transistor |url=https://www.nature.com/articles/ncomms2734 |journal=Nature Communications |volume=4 |issue=2013 |pages=1778 |year=2013 |last1=Ballarini |first1=D. |last2=De Giorgi |first2=M. |last3=Cancellieri |first3=E. |display-authors=etal |doi=10.1038/ncomms2734 |doi-access=free |pmid=23653190 |bibcode=2013NatCo...4E1778B |arxiv=1201.4071 }}
12. ^{{Cite journal|last=Moxley|first=Frederick Ira|last2=Byrnes|first2=Tim|last3=Ma|first3=Baoling|last4=Yan|first4=Yun|last5=Dai|first5=Weizhong|date=2015|title=A G-FDTD scheme for solving multi-dimensional open dissipative Gross–Pitaevskii equations|journal=Journal of Computational Physics|volume=282|pages=303–316|doi=10.1016/j.jcp.2014.11.021|issn=0021-9991|bibcode=2015JCoPh.282..303M}}

External links

  • [https://www.youtube.com/watch?v=sWmvZ0IGrsU YouTube animation explaining what a polariton is in a semiconductor micro-resonator.]
  • Description of experimental research on polariton fluids at the Institute of Nanotechnologies within the Italian CNR.

1 : Quasiparticles

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/30 4:25:00