请输入您要查询的百科知识:

 

词条 Federer–Morse theorem
释义

  1. See also

  2. References

  3. Further reading

{{distinguish|Morse–Sard–Federer theorem}}{{context|date=March 2017}}

In mathematics, the Federer–Morse theorem, introduced by {{harvs|txt|author2-link=Anthony Morse|last2=Morse|author1-link=Herbert Federer|last1=Federer|year=1943}}, states that if f is a surjective continuous map from a compact metric space X to a compact metric space Y, then there is a Borel subset Z of X such that f restricted to Z is a bijection from Z to Y.

Moreover, the inverse of that restriction is a Borel section of f - it is a Borel isomorphism.[1]

See also

  • Uniformization
  • Hahn-Banach theorem

References

1. ^{{Cite book|author=Raymond C. Fabec|title=Fundamentals of Infinite Dimensional Representation Theory|date=28 June 2000|publisher=CRC Press|isbn=978-1-58488-212-1|page=12}}
  • .{{Citation | last1=Federer | first1=Herbert | last2=Morse | first2=A. P. | title=Some properties of measurable functions | doi=10.1090/S0002-9904-1943-07896-2 | mr=0007916 | year=1943 | journal=Bulletin of the American Mathematical Society | issn=0002-9904 | volume=49 | pages=270–277}}
  • {{Citation | last=Baggett | first=Lawrence W. | title=A Functional Analytical Proof of a Borel Selection Theorem | year=1990 | journal=Journal of Functional Analysis | volume=94 | pages=437–450}}

Further reading

  • Cn. J. Math., Vol. XXXII No 2, 1980, pp441-448 A Functional Analytic Proof of a Selection Lemma. L. W. Baggett and Arlan Ramsay
{{Use dmy dates|date=December 2017}}{{DEFAULTSORT:Federer-Morse theorem}}

1 : Theorems in topology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 3:03:00