请输入您要查询的百科知识:

 

词条 FODMAP
释义

  1. Absorption

  2. Sources in the diet

     Fructans, galactans and polyols  Sources of fructans  Sources of galactans  Sources of polyols  Fructose and lactose  Sources of fructose  Sources of lactose 

  3. Low-FODMAP diet

     Suggested foods  Effectiveness and risks   History  

  4. Role in non-celiac gluten sensitivity

  5. See also

  6. References

  7. Further reading

  8. External links

The term FODMAP is an acronym, derived from "Fermentable Oligo-, Di-, Mono-saccharides And Polyols".[1] They are short chain carbohydrates that are poorly absorbed in the small intestine. They include short chain oligo-saccharide polymers of fructose (fructans) and galactooligosaccharides (GOS, stachyose, raffinose), disaccharides (lactose), monosaccharides (fructose), and sugar alcohols (polyols), such as sorbitol, mannitol, xylitol and maltitol.[1][3] FODMAPs are naturally present in food and the human diet.

FODMAPs can cause digestive discomfort in people who are hypersensitive to luminal distension, but they do not cause intestinal inflammation. In fact, FODMAPs help avert digestive discomfort because they produce beneficial alterations in the gut flora.[4][5][6][7]

They are not the cause of these disorders,[8] but FODMAPs restriction (a low-FODMAP diet) might help to improve short-term digestive symptoms in adults with irritable bowel syndrome (IBS) and other functional gastrointestinal disorders (FGID).[8][10][11][12][13] Avoiding FODMAPs long-term can have a detrimental impact on the gut microbiota and metabolome.[3][11][13][17]

FODMAPs, especially fructans, are present in small amounts in gluten-containing grains and have been identified as a possible cause of symptoms in people with non-celiac gluten sensitivity.[1][19][2][1][3][4] They are only minor sources of FODMAPs when eaten in the usual standard quantities in the daily diet.[1] As of 2019, reviews conclude that although FODMAPs present in wheat and related grains may play a role in non-celiac gluten sensitivity, they only explain certain gastrointestinal symptoms, such as bloating, but not the extra-digestive symptoms that people with non-celiac gluten sensitivity may develop, such as neurological disorders, fibromyalgia, psychological disturbances, and dermatitis.[4][26][1] The use of a low FODMAP diet without a previous medical evaluation could cause health risks because it can ameliorate and mask digestive symptoms of celiac disease, delaying or avoiding its correct diagnosis and therapy.[28]

Absorption

FODMAPs are poorly absorbed in the small intestine and subsequently fermented by the bacteria in the distal small and proximal large intestine. This is a normal phenomenon, common to everyone. The resultant production of gas potentially results in bloating and flatulence.[8]

Nevertheless, although FODMAP can cause certain digestive discomfort in some people, not only do they not cause intestinal inflammation, but they avoid it, because they produce beneficial alterations in the intestinal flora that contribute to maintain the good health of the colon.[4][5][6]

FODMAPs are not the cause of irritable bowel syndrome nor other functional gastrointestinal disorders, but rather a person develops symptoms when the underlying bowel response is exaggerated or abnormal.[8]

Fructose malabsorption and lactose intolerance may produce IBS symptoms through the same mechanism but, unlike with other FODMAPs, poor absorption of fructose is found in only a minority and, in certain populations, notably those of European descent, lactose intolerance is found in only a minority.[7] Many who benefit from a low FODMAP diet need not restrict fructose or lactose. It is possible to identify these two conditions with hydrogen and methane breath testing and thus eliminate the necessity for dietary compliance if possible.[8]

Sources in the diet

The significance of sources of FODMAPs varies through differences in dietary groups such as geography, ethnicity and other factors.[8] Commonly used FODMAPs comprise the following:[9]

  • oligosaccharides, including fructans and galacto-oligosaccharides;
  • disaccharides, including lactose;
  • monosaccharides, including fructose;
  • polyols, including sorbitol, xylitol, and mannitol.

Fructans, galactans and polyols

Sources of fructans

Sources of fructans include wheat, rye, barley, onion, garlic, Jerusalem and globe artichoke, beetroot, dandelion leaves, the white part of leeks, the white part of spring onion, brussels sprouts, savoy cabbage and prebiotics such as fructooligosaccharides (FOS), oligofructose and inulin.[8][10][40] Asparagus, fennel, red cabbage and radicchio contain moderate amounts but may be eaten if the advised portion size is observed.[40]

Sources of galactans

Pulses and beans are the main dietary sources (though green beans, canned lentils, sprouted mung beans, tofu (not silken) and tempeh contain comparatively low amounts).[11][10] Supplements of the enzyme supplement alpha-galactosidase may reduce symptoms[12] (if brands containing other FODMAPs, such as polyol artificial sweeteners, are avoided).

Sources of polyols

Polyols are found naturally in some fruit (particularly stone fruits), including apples, apricots, avocados, blackberries, cherries, lychees, nectarines, peaches, pears, plums, prunes, watermelon and some vegetables, including cauliflower, mushrooms and mange-tout peas. They are also used as bulk sweeteners and include isomalt, maltitol, mannitol, sorbitol and xylitol.[8][10] Cabbage, chicory and fennel contain moderate amounts but may be eaten if the advised portion size is observed.[11]

Fructose and lactose

People following a low-FODMAP diet may be able to tolerate moderate amounts of fructose and lactose, particularly if they have lactase persistence.

Sources of fructose

{{Main|Fructose malabsorption#Foods with high fructose content}}

Sources of lactose

{{Main|Lactose intolerance#Dietary avoidance}}

Low-FODMAP diet

A low-FODMAP diet consists in the global restriction of all fermentable carbohydrates (FODMAPs).[8]

Suggested foods

Below are low-FODMAP foods categorized by group according to the Monash University "Low-FODMAP Diet".[11][13]

  • Vegetables: alfalfa, bean sprouts, green beans, bok choy, capsicum (bell pepper), carrot, chives, fresh herbs, choy sum, cucumber, lettuce, tomato, zucchini, the green parts of leeks and spring onions
  • Fruits: orange, grapes, melon
  • Protein: meats, fish, chicken, tofu (not silken), tempeh
  • Dairy: lactose-free milk, lactose-free yoghurts, hard cheese
  • Breads and cereals: rice, crisped rice, maize/corn, potatoes, quinoa and breads made with their flours alone. Oats and spelt are relatively low in FODMAPs.
  • Biscuits (cookies) and snacks: made with flour of cereals listed above, without high FODMAP ingredients added (such as onion, pear or honey).
  • Nuts and seeds: almonds (no more than 10 nuts per serving), pumpkin seeds; not cashews or pistachios
  • Beverage options: water, coffee, tea

Other sources confirm the suitability of these and suggest some additional foods.[14]

Effectiveness and risks

A low-FODMAP diet might help to improve short-term digestive symptoms in adults with irritable bowel syndrome,[15][16][17][18] but its long-term follow-up can have negative effects because it causes a detrimental impact on the gut microbiota and metabolome.[3][16][18][19] It should only be used for short periods of time and under the advice of a specialist.[20] More studies are needed to evaluate its effectiveness in children with irritable bowel syndrome.[15]

There is only a little evidence of its effectiveness in treating functional symptoms in inflammatory bowel disease from small studies which are susceptible to bias.[21][22] More studies are needed to assess the true impact of this diet on health.[16][18]

In addition, the use of a low-FODMAP diet without medical advice can lead to serious health risks, including nutritional deficiencies and misdiagnosis, so it is advisable to conduct a complete medical evaluation before starting a low-FODMAP diet to ensure a correct diagnosis and that the appropriate therapy can be undertaken.[23]

Since the consumption of gluten is suppressed or reduced with a low-FODMAP diet, the improvement of the digestive symptoms with this diet may not be related to the withdrawal of the FODMAPs, but of gluten, indicating the presence of an unrecognized celiac disease, avoiding its diagnosis and correct treatment, with the consequent risk of several serious health complications, including various types of cancer.[23][24]

A low-FODMAP diet is highly restrictive in various groups of nutrients, can be impractical to follow in the long-term and may add an unnecessary financial burden.[22]

History

The basis of many functional gastrointestinal disorders (FGIDs) is distension of the intestinal lumen. Such luminal distension may induce pain, a sensation of bloating, abdominal distension and motility disorders. Therapeutic approaches seek to reduce factors that lead to distension, particularly of the distal small and proximal large intestine. Food substances that can induce distension are those that are poorly absorbed in the proximal small intestine, osmotically active, and fermented by intestinal bacteria with hydrogen (as opposed to methane) production. The small molecule FODMAPs exhibit these characteristics.[8]

Over many years, there have been multiple observations that ingestion of certain short-chain carbohydrates, including lactose, fructose and sorbitol, fructans and galactooligosaccharides, can induce gastrointestinal discomfort similar to that of people with irritable bowel syndrome. These studies also showed that dietary restriction of short-chain carbohydrates was associated with symptoms improvement.[25]

These short-chain carbohydrates (lactose, fructose and sorbitol, fructans and GOS) behave similarly in the intestine. Firstly, being small molecules and either poorly absorbed or not absorbed at all, they drag water into the intestine via osmosis.[26] Secondly, these molecules are readily fermented by colonic bacteria, so upon malabsorption in the small intestine they enter the large intestine where they generate gases (hydrogen, carbon dioxide and methane).[8] The dual actions of these carbohydrates cause an expansion in volume of intestinal contents, which stretches the intestinal wall and stimulates nerves in the gut. It is this 'stretching' that triggers the sensations of pain and discomfort that are commonly experienced by IBS sufferers.[27]

The FODMAP concept was first published in 2005 as part of a hypothesis paper.[28] In this paper, it was proposed that a collective reduction in the dietary intake of all indigestible or slowly absorbed, short-chain carbohydrates would minimise stretching of the intestinal wall. This was proposed to reduce stimulation of the gut's nervous system and provide the best chance of reducing symptom generation in people with IBS (see below). At the time, there was no collective term for indigestible or slowly absorbed, short-chain carbohydrates, so the term 'FODMAP' was created to improve understanding and facilitate communication of the concept.[28]

The low FODMAP diet was originally developed by a research team at Monash University in Melbourne, Australia.[11] The Monash team undertook the first research to investigate whether a low FODMAP diet improved symptom control in patients with IBS and established the mechanism by which the diet exerted its effect.[27][29] Monash University also established a rigorous food analysis program to measure the FODMAP content of a wide selection of Australian and international foods.[30][31][32] The FODMAP composition data generated by Monash University updated previous data that was based on limited literature, with guesses (sometimes wrong) made where there was little information.[33]

Role in non-celiac gluten sensitivity

FODMAPs that are present in gluten-containing grains have been identified as a possible cause of gastrointestinal symptoms in people with non-celiac gluten sensitivity, in place of,[34] or in addition to, gluten and other proteins in gluten-containing cereals, named amylasetrypsin inhibitors (ATIs).[35][1] The amount of fructans in these cereals is small. In rye they account for 3.6%–6.6% of dry matter, 0.7%–2.9% in wheat, and barley contains only trace amounts.[4] They are only minor sources of FODMAPs when eaten in the usual standard amounts in the daily diet.[1] Wheat and rye may comprise a major source of fructans when consumed in large amounts.[8]

In a 2018 double-blind, crossover research study on 59 persons on a gluten-free diet with challenges of gluten, fructans or placebo, intestinal symptoms (specifically bloating) were borderline significantly higher after challenge with fructans, in comparison with gluten proteins (P=0.049).[4][36] Although the differences between the three interventions was very small, the authors concluded that fructans are more likely to be the cause of gastrointestinal symptoms of non-celiac gluten sensitivity, rather than gluten.[37] In addition, fructans used in the study were extracted from chicory root, so it remains to be seen whether the wheat fructans produce the same effect.[36]

A 2018 review concluded that although fructan intolerance may play a role in non-celiac gluten sensitivity, it only explains some gastrointestinal symptoms, but not the extra-digestive symptoms that people with non-celiac gluten sensitivity may develop, such as neurological disorders, fibromyalgia, psychological disturbances, and dermatitis; and that FODMAPs cause digestive symptoms when the person is hypersensitive to luminal distension.[37]

A 2019 review concluded that wheat fructans can cause certain IBS-like symptoms, such as bloating, but they are not likely to cause immune activation nor extra-digestive symptoms since, in fact, many people with non-celiac gluten sensitivity report resolution of their symptoms after removing gluten-containing cereals while they continue to eat fruits and vegetables with high FODMAPs content in their diet.[36]

See also

{{portal|Food|Medicine|Health}}{{div col}}
  • Carbohydrate metabolism
  • Diet (nutrition)
  • Dieting
  • Digestion
  • List of diets
{{div col end}}

References

1. ^{{cite journal |vauthors=Fasano A, Sapone A, Zevallos V, Schuppan D|title=Nonceliac gluten sensitivity |journal=Gastroenterology |volume=148|issue=6|pages=1195–204|date=May 2015|pmid=25583468 |doi=10.1053/j.gastro.2014.12.049|type=Review|quote=Cereals such as wheat and rye, when consumed in normal quantities, are only minor sources of FODMAPs in the daily diet. (...) Table 1. Sources of FODMAPs (...) Oligosaccharides (fructans and/or galactans). Cereals: wheat and rye when eaten in large amounts (eg, bread, pasta, couscous, crackers, biscuits)}}
2. ^{{cite journal |vauthors=Ontiveros N, Hardy MY, Cabrera-Chavez F |title=Assessing of Celiac Disease and Nonceliac Gluten Sensitivity |journal=Gastroenterology Research and Practice |volume=2015 |issue= |pages=1–13 |year=2015 |pmid=26064097 |pmc=4429206 |doi=10.1155/2015/723954 |type=Review }}
3. ^{{cite journal |last1=Priyanka |first1=P |last2=Gayam |first2=S |last3=Kupec |first3=JT |title=The Role of a Low Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyol Diet in Nonceliac Gluten Sensitivity. |journal=Gastroenterology Research and Practice |date=2018 |volume=2018 |pages=1561476 |doi=10.1155/2018/1561476 |pmid=30158962|pmc=6109508 }}
4. ^{{cite journal | vauthors = Makharia A, Catassi C, Makharia GK | title = The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma | journal = Nutrients | volume = 7 | issue = 12 | pages = 10417–26 | date = December 2015 | pmid = 26690475 | pmc = 4690093 | doi = 10.3390/nu7125541 | type = Review }}
5. ^{{cite journal | vauthors = Greer JB, O'Keefe SJ | title = Microbial induction of immunity, inflammation, and cancer | journal = Frontiers in Physiology | volume = 1 | issue = | pages = 168 | year = 2011 | pmid = 21423403 | pmc = 3059938 | doi = 10.3389/fphys.2010.00168 | type = Review }}
6. ^{{cite journal | vauthors = Andoh A, Tsujikawa T, Fujiyama Y | title = Role of dietary fiber and short-chain fatty acids in the colon | journal = Current Pharmaceutical Design | volume = 9 | issue = 4 | pages = 347–58 | year = 2003 | pmid = 12570825 | type = Review | doi = 10.2174/1381612033391973 }}
7. ^{{cite journal | vauthors = Storhaug CL, Fosse SK, Fadnes LT | title = Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis | journal = The Lancet. Gastroenterology & Hepatology | volume = 2 | issue = 10 | pages = 738–746 | date = October 2017 | pmid = 28690131 | doi = 10.1016/S2468-1253(17)30154-1 }}
8. ^10 11 {{cite journal | vauthors = Gibson PR, Shepherd SJ | title = Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach | journal = Journal of Gastroenterology and Hepatology | volume = 25 | issue = 2 | pages = 252–8 | date = February 2010 | pmid = 20136989 | doi = 10.1111/j.1440-1746.2009.06149.x | quote=Wheat is a major source of fructans in the diet. (...) Table 1 Food sources of FODMAPs. (...) Oligosaccharides (fructans and/or galactans). Cereals: wheat & rye when eaten in large amounts (e.g. bread, pasta, couscous, crackers, biscuits)}}
9. ^{{cite book | first1 = Theodore M | last1 = Bayless | first2 = Stephen B | last2 = Hanauer | name-list-format = vanc |title=Advanced Therapy of Inflammatory Bowel Disease: Ulcerative Colitis |volume= 1, 3e|url=https://books.google.com/books?id=OdUtAwAAQBAJ&pg=PA250|year= 2014|publisher=PMPH-USA|isbn=978-1-60795-216-9|pages=250–}}
10. ^{{cite journal | vauthors = Gibson PR, Varney J, Malakar S, Muir JG | title = Food components and irritable bowel syndrome | journal = Gastroenterology | volume = 148 | issue = 6 | pages = 1158–74.e4 | date = May 2015 | pmid = 25680668 | doi = 10.1053/j.gastro.2015.02.005 }}
11. ^{{cite web|url=http://www.med.monash.edu/cecs/gastro/fodmap/low-high.html |title=The Monash University Low FODMAP diet |publisher=Monash University|location=Melbourne, Australia |date=2012-12-18 |access-date=2014-05-26}}
12. ^{{cite web|url=https://www.monashfodmap.com/blog/new-research-enzyme-therapy-can-help-reduce-symptoms-ibs-patients-sensitive-galacto-oligosaccharides-gos-present-legumes-soy-milk-and-nuts/|title=New research: Enzyme therapy can help reduce symptoms in IBS patients sensitive to galacto-oligosaccharides (GOS) present in legumes, soy milk and nuts|website=www.monashfodmap.com}}
13. ^{{cite web|url=https://www.monashfodmap.com/about-fodmap-and-ibs/frequently-asked-questions/|title=The Monash University Low FODMAP diet. Frequently asked questions|publisher=Monash University|location= Melbourne, Australia|access-date=3 June 2018}}
14. ^{{cite web | url=http://www.ibsgroup.org/brochures/fodmap-intolerances.pdf | title=Low FODMAP foods | publisher=IBS Group | access-date=16 May 2016 | deadurl=yes | archive-url=https://web.archive.org/web/20151214054728/http://www.ibsgroup.org/brochures/fodmap-intolerances.pdf | archive-date=14 December 2015 | df= }}
15. ^{{cite journal | vauthors = Turco R, Salvatore S, Miele E, Romano C, Marseglia GL, Staiano A | title = Does a low FODMAPs diet reduce symptoms of functional abdominal pain disorders? A systematic review in adult and paediatric population, on behalf of Italian Society of Pediatrics | journal = Italian Journal of Pediatrics | volume = 44 | issue = 1 | pages = 53 | date = May 2018 | pmid = 29764491 | pmc = 5952847 | doi = 10.1186/s13052-018-0495-8 | type = Systematic Review }}
16. ^{{cite journal | vauthors = Staudacher HM, Irving PM, Lomer MC, Whelan K | title = Mechanisms and efficacy of dietary FODMAP restriction in IBS | journal = Nature Reviews. Gastroenterology & Hepatology | volume = 11 | issue = 4 | pages = 256–66 | date = April 2014 | pmid = 24445613 | doi = 10.1038/nrgastro.2013.259 | type = Review | quote = An emerging body of research now demonstrates the efficacy of fermentable carbohydrate restriction in IBS. [...] However, further work is urgently needed both to confirm clinical efficacy of fermentable carbohydrate restriction in a variety of clinical subgroups and to fully characterize the effect on the gut microbiota and the colonic environ¬ment. Whether the effect on luminal bifidobacteria is clinically relevant, preventable, or long lasting, needs to be investigated. The influence on nutrient intake, dietary diversity, which might also affect the gut microbiota, and quality of life also requires further exploration as does the possible economic effects due to reduced physician contact and need for medication. Although further work is required to confirm its place in IBS and functional bowel disorder clinical pathways, fermentable carbohydrate restriction is an important consideration for future national and international IBS guidelines. }}
17. ^{{cite journal | vauthors = Marsh A, Eslick EM, Eslick GD | title = Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis | journal = European Journal of Nutrition | volume = 55 | issue = 3 | pages = 897–906 | date = April 2016 | pmid = 25982757 | doi = 10.1007/s00394-015-0922-1 }}
18. ^{{cite journal | vauthors = Rao SS, Yu S, Fedewa A | title = Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome | journal = Alimentary Pharmacology & Therapeutics | volume = 41 | issue = 12 | pages = 1256–70 | date = June 2015 | pmid = 25903636 | doi = 10.1111/apt.13167 }}
19. ^{{cite journal | vauthors = Heiman ML, Greenway FL | title = A healthy gastrointestinal microbiome is dependent on dietary diversity | journal = Molecular Metabolism | volume = 5 | issue = 5 | pages = 317–320 | date = May 2016 | pmid = 27110483 | pmc = 4837298 | doi = 10.1016/j.molmet.2016.02.005 | type = Review }}
20. ^{{cite journal | vauthors = Staudacher HM, Whelan K | title = The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS | journal = Gut | volume = 66 | issue = 8 | pages = 1517–1527 | date = August 2017 | pmid = 28592442 | doi = 10.1136/gutjnl-2017-313750 | type = Review }}
21. ^{{cite journal | vauthors = Gearry RB, Irving PM, Barrett JS, Nathan DM, Shepherd SJ, Gibson PR | title = Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study | journal = Journal of Crohn's & Colitis | volume = 3 | issue = 1 | pages = 8–14 | date = February 2009 | pmid = 21172242 | doi = 10.1016/j.crohns.2008.09.004 }}
22. ^{{cite journal | vauthors = Hou JK, Lee D, Lewis J | title = Diet and inflammatory bowel disease: review of patient-targeted recommendations | journal = Clinical Gastroenterology and Hepatology | volume = 12 | issue = 10 | pages = 1592–600 | date = October 2014 | pmid = 24107394 | pmc = 4021001 | doi = 10.1016/j.cgh.2013.09.063 | type = Review | quote = Even less evidence exists for the efficacy of the SCD, FODMAP, or Paleo diet. Furthermore, the practicality of maintaining these interventions over long periods of time is doubtful. At a practical level, adherence to defined diets may result in an unnecessary financial burden or reduction in overall caloric intake in patients who are already at risk for protein-calorie malnutrition. }}
23. ^{{cite journal | vauthors = Barrett JS | title = How to institute the low-FODMAP diet | journal = Journal of Gastroenterology and Hepatology | volume = 32 Suppl 1 | issue = | pages = 8–10 | date = March 2017 | pmid = 28244669 | doi = 10.1111/jgh.13686 | type = Review | quote = Common symptoms of IBS are bloating, abdominal pain, excessive flatus, constipation, diarrhea, or alternating bowel habit. These symptoms, however, are also common in the presentation of coeliac disease, inflammatory bowel disease, defecatory disorders, and colon cancer. Confirming the diagnosis is crucial so that appropriate therapy can be undertaken. Unfortunately, even in these alternate diagnoses, a change in diet restricting FODMAPs may improve symptoms and mask the fact that the correct diagnosis has not been made. This is the case with coeliac disease where a low-FODMAP diet can concurrently reduce dietary gluten, improving symptoms, and also affecting coeliac diagnostic indices. Misdiagnosis of intestinal diseases can lead to secondary problems such as nutritional deficiencies, cancer risk, or even mortality in the case of colon cancer. }}
24. ^{{cite web|url=http://www.worldgastroenterology.org/guidelines/global-guidelines/celiac-disease/celiac-disease-english|title=Celiac disease|date=July 2016|publisher=World Gastroenterology Organisation Global Guidelines|access-date=4 June 2018|deadurl=no|archive-url=https://web.archive.org/web/20170317123604/http://www.worldgastroenterology.org/guidelines/global-guidelines/celiac-disease/celiac-disease-english|archive-date=17 March 2017|df=dmy-all }}
25. ^{{cite journal | vauthors = Gibson PR | title = History of the low FODMAP diet | journal = Journal of Gastroenterology and Hepatology | volume = 32 Suppl 1 | issue = | pages = 5–7 | date = March 2017 | pmid = 28244673 | doi = 10.1111/jgh.13685 | type = Review }}
26. ^{{cite journal | vauthors = Murray K, Wilkinson-Smith V, Hoad C, Costigan C, Cox E, Lam C, Marciani L, Gowland P, Spiller RC | title = Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI | journal = The American Journal of Gastroenterology | volume = 109 | issue = 1 | pages = 110–9 | date = January 2014 | pmid = 24247211 | pmc = 3887576 | doi = 10.1038/ajg.2013.386 }}
27. ^{{cite journal | vauthors = Tuck CJ, Muir JG, Barrett JS, Gibson PR | title = Fermentable oligosaccharides, disaccharides, monosaccharides and polyols: role in irritable bowel syndrome | journal = Expert Review of Gastroenterology & Hepatology | volume = 8 | issue = 7 | pages = 819–34 | date = September 2014 | pmid = 24830318 | doi = 10.1586/17474124.2014.917956 }}
28. ^{{cite journal | vauthors = Gibson PR, Shepherd SJ | title = Personal view: food for thought--western lifestyle and susceptibility to Crohn's disease. The FODMAP hypothesis | journal = Alimentary Pharmacology & Therapeutics | volume = 21 | issue = 12 | pages = 1399–409 | date = June 2005 | pmid = 15948806 | doi = 10.1111/j.1365-2036.2005.02506.x }}
29. ^{{cite journal | vauthors = Barrett JS, Gearry RB, Muir JG, Irving PM, Rose R, Rosella O, Haines ML, Shepherd SJ, Gibson PR | title = Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon | journal = Alimentary Pharmacology & Therapeutics | volume = 31 | issue = 8 | pages = 874–82 | date = April 2010 | pmid = 20102355 | doi = 10.1111/j.1365-2036.2010.04237.x }}
30. ^{{cite journal | vauthors = Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR | title = Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC) | journal = Journal of Agricultural and Food Chemistry | volume = 57 | issue = 2 | pages = 554–65 | date = January 2009 | pmid = 19123815 | doi = 10.1021/jf802700e }}
31. ^{{cite journal | vauthors = Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR | title = Fructan and free fructose content of common Australian vegetables and fruit | journal = Journal of Agricultural and Food Chemistry | volume = 55 | issue = 16 | pages = 6619–27 | date = August 2007 | pmid = 17625872 | doi = 10.1021/jf070623x }}
32. ^{{cite journal | vauthors = Biesiekierski JR, Rosella O, Rose R, Liels K, Barrett JS, Shepherd SJ, Gibson PR, Muir JG | title = Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals | journal = Journal of Human Nutrition and Dietetics | volume = 24 | issue = 2 | pages = 154–76 | date = April 2011 | pmid = 21332832 | doi = 10.1111/j.1365-277X.2010.01139.x }}
33. ^{{cite journal | vauthors = Southgate DA, Paul AA, Dean AC, Christie AA | title = Free sugars in foods | journal = Journal of Human Nutrition | volume = 32 | issue = 5 | pages = 335–47 | date = October 1978 | pmid = 363937 | doi = 10.3109/09637487809143898 }}
34. ^{{cite journal |vauthors=Ontiveros N, Hardy MY, Cabrera-Chavez F |title=Assessing of Celiac Disease and Nonceliac Gluten Sensitivity |journal=Gastroenterology Research and Practice |volume=2015 |issue= |pages=1–13 |year=2015 |pmid=26064097 |pmc=4429206 |doi=10.1155/2015/723954 |type=Review |quote=The literature suggests that FODMAPs and not gluten per se are the triggers of gastrointestinal symptoms in patients that fit most of the proposed NCGS definitions }}
35. ^{{cite journal|vauthors=Volta U, Caio G, Tovoli F, De Giorgio R|title=Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness|journal=Cellular and Molecular Immunology|volume=10|issue=5|year=2013|pages=383–392|issn=1672-7681|doi=10.1038/cmi.2013.28|pmid=23934026|type=Review|pmc=4003198}}
36. ^{{cite journal| vauthors=Volta U, De Giorgio R, Caio G, Uhde M, Manfredini R, Alaedini A| title=Nonceliac Wheat Sensitivity: An Immune-Mediated Condition with Systemic Manifestations | journal=Gastroenterol Clin North Am | date= March 2019 | volume= 48 | issue= 1 | pages= 165–182 | pmid=30711208 | doi=10.1016/j.gtc.2018.09.012 | pmc=6364564 | type=Review |quote=Furthermore, a role for the FODMAP (eg, fructans) component of wheat as the sole trigger for symptoms is somewhat doubtful, because many patients with NCWS report resolution of symptoms after the withdrawal of wheat and related cereals, while continuing to ingest vegetables and fruits with high FODMAP content in their diets.59 On the whole, it is conceivable that more than one culprit may be involved in symptoms of NCWS (as they are currently defined), including gluten, other wheat proteins, and FODMAPs.60–62 }}
37. ^{{cite journal |last1=Verbeke |first1=K |title=Nonceliac Gluten Sensitivity: What Is the Culprit? |journal=Gastroenterology |date=February 2018 |volume=154 |issue=3 |pages=471–473 |doi=10.1053/j.gastro.2018.01.013 |pmid=29337156| quote=Although intolerance to fructans and other FODMAPs may contribute to NCGS, they may only explain gastrointestinal symptoms and not the extraintestinal symptoms observed in NCGS patients, such as neurologic dysfunction, psychological disturbances, fibromyalgia, and skin rash.15 Therefore, it is unlikely that they are the sole cause of NCGS.}}

Further reading

{{refbegin}}
  • {{cite journal | vauthors = Fedewa A, Rao SS | title = Dietary fructose intolerance, fructan intolerance and FODMAPs | journal = Current Gastroenterology Reports | volume = 16 | issue = 1 | pages = 370 | date = January 2014 | pmid = 24357350 | pmc = 3934501 | doi = 10.1007/s11894-013-0370-0 | type = Review }}
  • {{cite journal | vauthors = van der Waaij LA, Stevens J | title = The low FODMAP diet as a therapy for irritable bowel syndrome | language = Dutch | journal = Nederlands Tijdschrift voor Geneeskunde | volume = 158 | issue = | pages = A7407 | year = 2014 | pmid = 24823855 | doi = | type = Review }}
  • {{cite journal | vauthors = Barrett JS | title = Extending our knowledge of fermentable, short-chain carbohydrates for managing gastrointestinal symptoms | journal = Nutrition in Clinical Practice | volume = 28 | issue = 3 | pages = 300–6 | date = June 2013 | pmid = 23614962 | doi = 10.1177/0884533613485790 | type = Review }}
{{refend}}

External links

  • [https://www.monashfodmap.com/ Description of Monash University Low FODMAP diet and lists of available resources]
  • Stanford University: The Low FODMAP Diet
{{Diets}}{{Irritable bowel syndrome}}{{portal bar|Metabolism}}

4 : Diets|Metabolism|Gastroenterology|Carbohydrates

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 18:54:25