词条 | Geometrically regular ring |
释义 |
In algebraic geometry, a geometrically regular ring is a Noetherian ring over a field that remains a regular ring after any finite extension of the base field. Geometrically regular schemes are defined in a similar way. In older terminology, points with regular local rings were called simple points, and points with geometrically regular local rings were called absolutely simple points. Over fields that are of characteristic 0, or algebraically closed, or more generally perfect, geometrically regular rings are the same as regular rings. Geometric regularity originated when Chevalley and Weil pointed out to {{harvs|txt|last=Zariski||authorlink=Oscar Zariski|year=1947}} that, over non-perfect fields, the Jacobian criterion for a simple point of an algebraic variety is not equivalent to the condition that the local ring is regular. A Noetherian local ring containing a field k is geometrically regular over k if and only if it is formally smooth over k. Examples{{harvtxt|Zariski|1947}} gave the following two examples of local rings that are regular but not geometrically regular.
See also
References
|journal=Trans. Amer. Math. Soc. |volume=62|year=1947|pages= 1–52|jstor=1990628|doi=10.1090/s0002-9947-1947-0021694-1}} 2 : Commutative algebra|Algebraic geometry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。