请输入您要查询的百科知识:

 

词条 Artin–Mazur zeta function
释义

  1. Analogues

  2. See also

  3. References

In mathematics, the Artin–Mazur zeta function, named after Michael Artin and Barry Mazur, is a function that is used for studying the iterated functions that occur in dynamical systems and fractals.

It is defined as the formal power series

where Fix(ƒ n) is the set of fixed points of the nth iterate of the function ƒ, and card(Fix(ƒ n)) is the number of fixed points (i.e. the cardinality of that set).

Note that the zeta function is defined only if the set of fixed points is finite for each n. This definition is formal in that the series does not always have a positive radius of convergence.

The Artin–Mazur zeta function is invariant under topological conjugation.

The Milnor–Thurston theorem states that the Artin–Mazur zeta function is the inverse of the kneading determinant of ƒ.

Analogues

The Artin–Mazur zeta function is formally similar to the local zeta function, when a diffeomorphism on a compact manifold replaces the Frobenius mapping for an algebraic variety over a finite field.

The Ihara zeta function of a graph can be interpreted as an example of the Artin–Mazur zeta function.

See also

  • Lefschetz number
  • Lefschetz zeta-function

References

  • {{Citation | doi=10.2307/1970384 | last1=Artin | first1=Michael | author1-link=Michael Artin | last2=Mazur | first2=Barry | author2-link=Barry Mazur | title=On periodic points | mr=0176482 | year=1965 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=81 | pages=82–99 | issue=1 | publisher=Annals of Mathematics | jstor=1970384}}
  • David Ruelle, Dynamical Zeta Functions and Transfer Operators (2002) (PDF)
  • {{cite journal | first1=Motoko |last1=Kotani | first2=Toshikazu | last2=Sunada | author2-link=Toshikazu Sunada | title=Zeta functions of finite graphs | journal=J. Math. Sci. Univ. Tokyo | volume=7 | year=2000 | pages=7–25 }}
  • {{citation | title=Zeta Functions of Graphs: A Stroll through the Garden | volume=128 | series=Cambridge Studies in Advanced Mathematics | first=Audrey | last=Terras | authorlink=Audrey Terras | publisher=Cambridge University Press | year=2010 | isbn=0-521-11367-9 | zbl=1206.05003 }}
{{DEFAULTSORT:Artin-Mazur zeta function}}

3 : Zeta and L-functions|Dynamical systems|Fixed points (mathematics)

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 13:45:56