请输入您要查询的百科知识:

 

词条 Retinal
释义

  1. Vitamin A metabolism

  2. Vision

      Opsins    Visual cycle  

  3. Type 1 rhodopsins

  4. History

  5. See also

  6. References

  7. Further reading

  8. External links

{{Distinguish|Retinol|Retina}}{{chembox
| Watchedfields = changed
| verifiedrevid = 444085949
| Name = All-trans-retinal
| ImageFile = all-trans-Retinal2.svg
| ImageSize = 260
| ImageAlt = Skeletal formula of retinal
| ImageFile1 = Retinal 3D ball.png
| ImageSize1 = 260
| ImageAlt1 = Ball-and-stick model of the retinal molecule
| IUPACName = (2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenal
| OtherNames = retinene; retinaldehyde; vitamin A aldehyde; RAL
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 116-31-4
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = RR725D715M
| PubChem = 638015
| ChemSpiderID = 553582
| StdInChI = 1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8+,17-13+
| StdInChIKey = NCYCYZXNIZJOKI-OVSJKPMPSA-N
| SMILES = CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C(=C/C=O)/C)/C}}
|Section2={{Chembox Properties
| C=20 | H=28 | O=1
| Appearance = Orange crystals from petroleum ether[1]
| Density =
| MeltingPtC = 61 to 64
| MeltingPt_ref = [1]
| BoilingPt =
| Solubility = Nearly insoluble
| SolubleOther = Soluble
| Solvent = fat}}
|Section7={{Chembox Hazards
| MainHazards =
| FlashPt =
| AutoignitionPt = }}
|Section8={{Chembox Related
| OtherFunction =
| OtherFunction_label =
| OtherCompounds = retinol; retinoic acid; beta-carotene; dehydroretinal; 3-hydroxyretinal; 4-hydroxyretinal}}
}}

Retinal is also known as retinaldehyde. It was originally called retinene,[2] and renamed[3] after it was discovered to be vitamin A aldehyde.[4][5] Retinal is one of the many forms of vitamin A (the number of which varies from species to species). Retinal is a polyene chromophore, bound to proteins called opsins, and is the chemical basis of animal vision.

Retinal allows certain microorganisms to convert light into metabolic energy.

Vertebrate animals ingest retinal directly from meat, or they produce retinal from carotenoids, either from one of two carotenes (α-carotene, β-carotene) or from β-cryptoxanthin, a type of xanthophyll. These carotenoids must be obtained from plants or other photosynthetic organisms. No other carotenoids can be converted by animals to retinal, and some carnivores cannot convert any carotenoids at all. The other main forms of vitamin A, retinol, and a partially active form, retinoic acid, may both be produced from retinal.

Invertebrates such as insects and squid use hydroxylated forms of retinal in their visual systems, which derive from conversion from other xanthophylls.

Vitamin A metabolism

Living organisms produce retinal (RAL) by irreversible oxidative cleavage of carotenoids.[6]

For example,

beta-carotene + O2 → 2 retinal

catalyzed by a beta-carotene 15,15'-monooxygenase[7]

or a beta-carotene 15,15'-dioxygenase.[8]

Just as carotenoids are the precursors of retinal, retinal is the precursor of the other forms of vitamin A. Retinal is interconvertible with retinol (ROL), the transport and storage form of vitamin A

retinal + NADPH + H+ {{eqm}} retinol + NADP+

retinol + NAD+ {{eqm}} retinal + NADH + H+

catalyzed by retinol dehydrogenases (RDHs)[9] and alcohol dehydrogenases (ADHs).[10]

Retinol is called vitamin A alcohol, or more often, simply vitamin A. Retinal can also be oxidized to retinoic acid (RA)

retinal + NAD+ + H2O → retinoic acid + NADH + H+ (catalyzed by RALDH)

retinal + O2 + H2O → retinoic acid + H2O2 (catalyzed by retinal oxidase)

catalyzed by retinal dehydrogenases[11] also known as retinaldehyde dehydrogenases (RALDHs)[10]

as well as retinal oxidases.[12]

Retinoic acid, sometimes called vitamin A acid, is an important signaling molecule and hormone in vertebrate animals.

Vision

The molecule retinal is a conjugated chromophore. In the human eye, retinal begins in an 11-cis-retinal conformation, which, upon capturing a photon of the correct wavelength, straightens out into an all-trans-retinal conformation. This conformation change pushes against an opsin protein in the retina, which triggers a chemical signaling cascade which can result in perception of light or images by the human brain. The absorbance spectrum of the chromophore depends on its interactions with the opsin protein to which it is bound, so that different retinal-opsin complexes will absorb photons different wavelengths (different colors of light).

Opsins

Opsins are proteins and the retinal-binding visual pigments found in the photoreceptor cells in the retinas of eyes. An opsin is arranged into a bundle of seven transmembrane alpha-helices connected by six loops. In rod cells the opsin molecules are embedded in the membranes of the disks which are entirely inside of the cell. The N-terminus head of the molecule extends into the interior of the disk, and the C-terminus tail extends into the cytoplasm of the cell. In cone cells the disks are defined by the cell's plasma membrane so that the N-terminus head extends outside of the cell. Retinal binds covalently to a lysine on the transmembrane helix nearest the C-terminus of the protein through a Schiff base linkage. Formation of the Schiff base linkage involves removing the oxygen atom from retinal and two hydrogen atoms from the free amino group of lysine, giving H2O. Retinylidene is the divalent group formed by removing the oxygen atom from retinal, and so opsins have been called retinylidene proteins.

Opsins are prototypical G protein-coupled receptors (GPCRs).[13] Bovine rhodopsin, the opsin of the rod cells of cattle, was the first GPCR to have its X-ray structure determined.[14]

Bovine rhodopsin contains 348 amino acid residues. The retinal chromophore binds at Lys296.

Although mammals use retinal exclusively as the opsin chromophore, other groups of animals additionally use four chromophores closely related to retinal. These are 3,4-didehydroretinal, (3R)-3-hydroxyretinal, (3S)-3-hydroxyretinal, and (4R)-4-hydroxyretinal. Many fish and amphibians use 3,4-didehydroretinal, also called dehydroretinal. With the exception of the dipteran suborder Cyclorrhapha, the so-called higher flies, all insects examined use the (R)-enantiomer of 3-hydroxyretinal. The (R)-enantiomer is to be expected if 3-hydroxyretinal is produced directly from xanthophyll carotenoids. Cyclorrhaphans, including Drosophila, use (3S)-3-hydroxyretinal.[15][16]

Firefly squid have been found to use (4R)-4-hydroxyretinal.

Visual cycle

The visual cycle is a circular enzymatic pathway, which is the front-end of phototransduction. It regenerates 11-cis-retinal. For example, the visual cycle of mammalian rod cells is as follows:

  1. all-trans-retinyl ester + H2O → 11-cis-retinol + fatty acid; RPE65 isomerohydrolases,&91;17&93;
  2. 11-cis-retinol + NAD+ → 11-cis-retinal + NADH + H+; 11-cis-retinol dehydrogenases,
  3. 11-cis-retinal + aporhodopsin → rhodopsin + H2O; forms Schiff base linkage to lysine, -CH=N+H-,
  4. rhodopsin + hν → metarhodopsin II; 11-cis photoisomerizes to all-trans,
    rhodopsin + hν → photorhodopsin → bathorhodopsin → lumirhodopsin → metarhodopsin I → metarhodopsin II,
  5. metarhodopsin II + H2O → aporhodopsin + all-trans-retinal,
  6. all-trans-retinal + NADPH + H+ → all-trans-retinol + NADP+; all-trans-retinol dehydrogenases,
  7. all-trans-retinol + fatty acid → all-trans-retinyl ester + H2O; lecithin retinol acyltransferases (LRATs).&91;18&93;

Steps 3,4,5,6 occur in rod cell outer segments; Steps 1, 2, and 7 occur in retinal pigment epithelium (RPE) cells.

RPE65 isomerohydrolases are homologous with beta-carotene monooxygenases;[6] the homologous ninaB enzyme in Drosophila has both retinal-forming carotenoid-oxygenase activity and all-trans to 11-cis isomerase activity.[19]

Type 1 rhodopsins

{{main article|Microbial rhodopsin}}

All-trans-retinal is also an essential component of type I, or microbial, opsins such as bacteriorhodopsin, channelrhodopsin, and halorhodopsin. In these molecules, light causes the all-trans-retinal to become 13-cis retinal,[20] which then cycles back to all-trans-retinal in the dark state.

History

The American biochemist George Wald and others had outlined the visual cycle by 1958. For his work, Wald won a share of the 1967 Nobel Prize in Physiology or Medicine with Haldan Keffer Hartline and Ragnar Granit.[21]

See also

  • Visual phototransduction
  • Visual perception
  • Sensory system
  • Purple Earth hypothesis

References

1. ^Merck Index, 13th Edition, 8249
2. ^{{cite journal|last1=WALD|first1=GEORGE|title=Carotenoids and the Vitamin A Cycle in Vision|journal=Nature|date=14 July 1934|volume=134|issue=3376|pages=65|doi=10.1038/134065a0|bibcode=1934Natur.134...65W}}
3. ^{{cite journal|last1=Wald|first1=G|title=Molecular basis of visual excitation.|journal=Science|date=11 October 1968|volume=162|issue=3850|pages=230–9|pmid=4877437|doi=10.1126/science.162.3850.230|bibcode=1968Sci...162..230W}}
4. ^{{cite journal|last1=MORTON|first1=R. A.|last2=GOODWIN|first2=T. W.|title=Preparation of Retinene in Vitro|journal=Nature|date=1 April 1944|volume=153|issue=3883|pages=405–406|doi=10.1038/153405a0|bibcode=1944Natur.153..405M}}
5. ^{{cite journal|last1=BALL|first1=S|last2=GOODWIN|first2=TW|last3=MORTON|first3=RA|title=Retinene1-vitamin A aldehyde.|journal=The Biochemical Journal|date=1946|volume=40|issue=5–6|pages=lix|pmid=20341217}}
6. ^{{cite journal |last=von Lintig |first=Johannes |last2=Vogt |first2=Klaus |year=2000 |title=Filling the Gap in Vitamin A Research: Molecular Identification of An Enzyme Cleaving Beta-carotene to Retinal |journal=Journal of Biological Chemistry |volume=275 |issue=16 |pages=11915–11920 |pmid=10766819 |doi=10.1074/jbc.275.16.11915}}
7. ^{{cite journal |last=Woggon |first=Wolf-D. |year=2002 |title=Oxidative cleavage of carotenoids catalyzed by enzyme models and beta-carotene 15,15´-monooxygenase |journal=Pure and Applied Chemistry |volume=74 |issue=8 |pages=1397–1408 |doi=10.1351/pac200274081397}}
8. ^{{cite journal |last=Kim |first=Yeong-Su |last2=Kim |first2=Nam-Hee |last3=Yeom |first3=Soo-Jin |last4=Kim |first4=Seon-Won |last5=Oh |first5=Deok-Kun |year=2009 |title=In Vitro Characterization of a Recombinant Blh Protein from an Uncultured Marine Bacterium as a β-Carotene 15,15′-Dioxygenase |journal=Journal of Biological Chemistry |volume=284 |issue=23 |pages=15781–93 |pmid=19366683 |doi=10.1074/jbc.M109.002618 |pmc=2708875}}
9. ^{{cite journal |last=Lidén |first=Martin |last2=Eriksson |first2=Ulf |year=2006 |title=Understanding Retinol Metabolism: Structure and Function of Retinol Dehydrogenases |journal=Journal of Biological Chemistry |volume=281 |issue=19 |pages=13001–13004 |doi=10.1074/jbc.R500027200 |pmid=16428379}}
10. ^{{cite journal |last1=Duester |first1=G |title=Retinoic Acid Synthesis and Signaling during Early Organogenesis |journal=Cell |volume=134 |issue=6 |pages=921–31 |date=September 2008 |pmid=18805086 |pmc=2632951 |doi=10.1016/j.cell.2008.09.002 }}
11. ^{{cite journal |last=Lin |first=Min |last2=Zhang |first2=Min |last3=Abraham |first3=Michael |last4=Smith |first4=Susan M. |last5=Napoli |first5=Joseph L. |year=2003 |title=Mouse Retinal Dehydrogenase 4 (RALDH4), Molecular Cloning, Cellular Expression, and Activity in 9-cis-Retinoic Acid Biosynthesis in Intact Cells |journal=Journal of Biological Chemistry |volume=278 |issue=11 |pages=9856–9861 |doi=10.1074/jbc.M211417200 |pmid=12519776}}
12. ^{{cite web |url=http://www.genome.ad.jp/dbget-bin/www_bget?enzyme+1.2.3.11 |title=KEGG ENZYME: 1.2.3.11 retinal oxidase |accessdate=2009-03-10 }}
13. ^{{cite journal |last=Lamb |first=T D |year=1996 |title=Gain and kinetics of activation in the G-protein cascade of phototransduction |journal=Proceedings of the National Academy of Sciences |volume=93 |issue=2 |pages=566–570 |pmid=8570596 |doi=10.1073/pnas.93.2.566 |pmc=40092|bibcode = 1996PNAS...93..566L }}
14. ^{{cite journal |last=Palczewski |first=Krzysztof |last2=Kumasaka |first2= Takashi |last3=Hori |authorlink=Krzysztof Palczewski |year=2000 |title=Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor |journal=Science |volume=289 |issue=5480 |pages=739–745 |doi=10.1126/science.289.5480.739 |pmid=10926528 |first3=T |last4=Behnke |first4=CA |last5=Motoshima |first5=H |last6=Fox |first6=BA |last7=Le Trong |first7=I |last8=Teller |first8=DC |last9=Okada |first9=T|last10=Stenkamp |first10=R. E. |last11=Yamamoto |first11=M |last12=Miyano |first12=M |bibcode = 2000Sci...289..739P |display-authors=8 |citeseerx=10.1.1.1012.2275 }}
15. ^{{cite journal |last=Seki |first=Takaharu |last2=Isono |first2=Kunio |last3=Ito |first3=Masayoshi |last4=Katsuta |first4=Yuko |year=1994 |title=Flies in the Group Cyclorrhapha Use (3S)-3-Hydroxyretinal as a Unique Visual Pigment Chromophore |journal=European Journal of Biochemistry |volume=226 |issue=2 |pages=691–696 |doi=10.1111/j.1432-1033.1994.tb20097.x |pmid=8001586}}
16. ^{{cite journal |last=Seki |first=Takaharu |last2=Isono |first2=Kunio |last3=Ozaki |first3=Kaoru |last4=Tsukahara |first4=Yasuo |last5=Shibata-Katsuta |first5=Yuko |last6=Ito |first6=Masayoshi |last7=Irie |first7=Toshiaki |last8=Katagiri |first8=Masanao |year=1998 |title=The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster: All-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark |journal=European Journal of Biochemistry |volume=257 |issue=2 |pages=522–527 |doi=10.1046/j.1432-1327.1998.2570522.x |pmid=9826202 }}
17. ^{{cite journal |last=Moiseyev |first=Gennadiy |last2=Chen |first2=Ying |last3=Takahashi |first3=Yusuke |last4=Wu |first4=Bill X. |last5=Ma |first5=Jian-xing |year=2005 |title=RPE65 is the isomerohydrolase in the retinoid visual cycle |journal=Proceedings of the National Academy of Sciences |volume=102 |issue=35 |pages=12413–12418 |doi=10.1073/pnas.0503460102 |pmid=16116091 |pmc=1194921|bibcode = 2005PNAS..10212413M }}
18. ^{{cite journal |last=Jin |first=Minghao |last2=Yuan |first2=Quan |last3=Li |first3=Songhua |last4=Travis |first4=Gabriel H. |year=2007 |title=Role of LRAT on the Retinoid Isomerase Activity and Membrane Association of Rpe65 |journal=Journal of Biological Chemistry |volume=282 |issue=29 |pages=20915–20924 |doi=10.1074/jbc.M701432200 |pmid=17504753 |pmc=2747659}}
19. ^{{cite journal |last=Oberhauser |first=Vitus |last2=Voolstra |first2=Olaf |last3=Bangert |first3=Annette |last4=von Lintig |first4=Johannes |last5=Vogt |first5=Klaus |year=2008 |title=NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide |journal=Proceedings of the National Academy of Sciences |volume=105 |issue=48 |pages=19000–5 |doi=10.1073/pnas.0807805105 |pmid=19020100 |pmc=2596218|bibcode = 2008PNAS..10519000O }}
20. ^{{cite journal | doi = 10.1016/S1011-1344(02)00245-2 | title = All-trans to 13-cis retinal isomerization in light-adapted bacteriorhodopsin at acidic pH | year = 2002 | last1 = Chen | first1 = De-Liang | last2 = Wang | first2 = Guang-yu | last3 = Xu | first3 = Bing | last4 = Hu | first4 = Kun-Sheng | journal = Journal of Photochemistry and Photobiology B: Biology | volume = 66 | issue = 3 | pages = 188–194}}
21. ^1967 Nobel Prize in Medicine

Further reading

{{refbegin}}
  • {{cite journal |last=Prado-Cabrero |first=Alfonso |last2=Scherzinger |first2=Daniel |last3=Avalos |first3=Javier |last4=Al-Babili |first4=Salim |year=2007 |title=Retinal Biosynthesis in Fungi: Characterization of the Carotenoid Oxygenase CarX from Fusarium fujikuroi |journal=Eukaryotic Cell |volume=6 |issue=4 |pages=650–657 |doi=10.1128/EC.00392-06 |pmid=17293483 |pmc=1865656}}
  • {{cite journal |last=Kloer |first=Daniel P. |last2=Ruch |first2=Sandra |last3=Al-Babili |first3=Salim |last4=Beyer |first4=Peter |last5=Schulz |first5=Georg E. |year=2005 |title=The Structure of a Retinal-Forming Carotenoid Oxygenase |journal=Science |volume=308 |issue=5719 |pages=267–269 |doi=10.1126/science.1108965 |pmid=15821095|bibcode = 2005Sci...308..267K }}
  • {{cite journal |last=Schmidt |first=Holger |last2=Kurtzer |first2=Robert |last3=Eisenreich |first3=Wolfgang |last4=Schwab |first4=Wilfried |year=2006 |title=The Carotenase AtCCD1 from Arabidopsis thaliana Is a Dioxygenase |journal=Journal of Biological Chemistry |volume=281 |issue=15 |pages=9845–9851 |doi=10.1074/jbc.M511668200 |pmid=16459333}}
  • {{cite journal |last=Wang |first=Tao |last2=Jiao |first2=Yuchen |last3=Montell |first3=Craig |year=2007 |title=Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction |journal=Journal of Cell Biology |volume=177 |issue=2 |pages=305–316 |doi=10.1083/jcb.200610081 |pmid=17452532 |pmc=2064138}}
  • {{cite web |url=http://nobelprize.org/nobel_prizes/medicine/laureates/1967/wald-lecture.pdf |title=Nobel Lecture: The Molecular Basis of Visual Excitation |accessdate=2009-02-23 |last=Wald |first=George |authorlink=George Wald |year=1967}}
  • {{cite journal |last=Fernald |first=Russell D. |year=2006 |title=Casting a Genetic Light on the Evolution of Eyes |journal=Science |volume=313 |issue=5795 |pages=1914–1918 |doi=10.1126/science.1127889 |pmid=17008522 |bibcode=2006Sci...313.1914F}}
  • {{cite book |editor-last=Briggs |editor-first=Winslow R. |editor2-last=Spudich |editor2-first=John L. |title=Handbook of Photosensory Receptors |year=2005 |publisher=Wiley |isbn=978-3-527-31019-7}}
  • {{cite journal |last=Baylor |first=D A |last2=Lamb |first2=T D |last3=Yau |first3=K W |year=1979 |title=Responses of retinal rods to single photons |journal=Journal of Physiology |volume=288 |issue= |pages=613–634 |pmid=112243 |doi= 10.1113/jphysiol.1979.sp012716|pmc=1281447|doi-broken-date=2019-02-14 }}
  • {{cite journal |last=Hecht |first=Selig |last2=Shlaer |first2=Simon |last3=Pirenne |first3=Maurice Henri |year=1942 |title=ENERGY, QUANTA, AND VISION |journal=Journal of General Physiology |volume=25 |issue= 6|pages=819–840 |doi=10.1085/jgp.25.6.819 |pmid=19873316 |pmc=2142545}}
  • {{cite journal |last=Barlow |first=H.B. |last2=Levick |first2=W.R. |last3=Yoon |first3=M. |year=1971 |title=Responses to single quanta of light in retinal ganglion cells of the cat |journal=Vision Research |volume=11 |issue=Supplement 3 |pages=87–101 |doi=10.1016/0042-6989(71)90033-2 |pmid=5293890}}
  • {{cite journal |last=Venter |first=J. Craig |last2=Remington |authorlink=Craig Venter |year=2004 |title=Environmental Genome Shotgun Sequencing of the Sargasso Sea |journal=Science |volume=304 |issue=5667 |pages=66–74 |doi=10.1126/science.1093857 |pmid=15001713 |first2=K |last3=Heidelberg |first3=JF |last4=Halpern |first4=AL |last5=Rusch |first5=D |last6=Eisen |first6=JA |last7=Wu |first7=D |last8=Paulsen |first8=I |last9=Nelson |first9=KE |last10=Nelson |first10=W |last11=Fouts |first11=D. E. |last12=Levy |first12=S |last13=Knap |first13=A. H. |last14=Lomas |first14=M. W. |last15=Nealson |first15=K |last16=White |first16=O |last17=Peterson |first17=J |last18=Hoffman |first18=J |last19=Parsons |first19=R |last20=Baden-Tillson |first20=H |last21=Pfannkoch |first21=C |last22=Rogers |first22=Y. H. |last23=Smith |first23=H. O. |bibcode=2004Sci...304...66V|display-authors=8 |citeseerx=10.1.1.124.1840 }} The oceans are full of type 1 rhodopsin.
  • {{cite journal |last=Waschuk |first=Stephen A. |last2=Bezerra |first2=Arandi G. |last3=Shi |first3=Lichi |last4=Brown |first4=Leonid S. |year=2005 |title=Leptosphaeria rhodopsin: Bacteriorhodopsin-like proton pump from a eukaryote |journal=Proceedings of the National Academy of Sciences |volume=102 |issue=19 |pages=6879–6883 |doi=10.1073/pnas.0409659102 |pmid=15860584 |pmc=1100770|bibcode = 2005PNAS..102.6879W }}
  • {{cite journal |last=Su |first=Chih-Ying |last2=Luo |first2=Dong-Gen |last3=Terakita |first3=Akihisa |last4=Shichida |first4=Yoshinori |last5=Liao |first5=Hsi-Wen |last6=Kazmi |first6=Manija A. |last7=Sakmar |first7=Thomas P. |last8=Yau |first8=King-Wai |year=2006 |title=Parietal-Eye Phototransduction Components and Their Potential Evolutionary Implications |journal=Science |volume=311 |issue=5767 |pages=1617–1621 |doi=10.1126/science.1123802 |pmid=16543463|bibcode = 2006Sci...311.1617S }}
  • {{cite journal |last=Luo |first=Dong-Gen |last2=Xue |first2=Tian |last3=Yau |first3=King-Wai |year=2008 |title=How vision begins: An odyssey |journal=Proceedings of the National Academy of Sciences |volume=105 |issue=29 |pages=9855–9862 |doi=10.1073/pnas.0708405105 |pmid=18632568 |pmc=2481352|bibcode = 2008PNAS..105.9855L }} Good historical review.
  • {{cite journal |last=Schäfer |first=Günter |last2=Engelhard |first2=Martin |last3=Müller |first3=Volker |year=1999 |title=Bioenergetics of the Archaea |journal=Microbiology and Molecular Biology Reviews |volume=63 |issue=3 |pages=570–620 |pmid=10477309 |doi= |pmc=103747}}
  • {{cite journal |last=Fan |first=Jie |last2=Woodruff |first2=Michael L |last3=Cilluffo |first3=Marianne C |last4=Crouch |first4=Rosalie K |last5=Fain |first5=Gordon L |year=2005 |title=Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice |journal=Journal of Physiology |volume=568 |issue=1 |pages=83–95 |doi=10.1113/jphysiol.2005.091942 |pmid=15994181 |pmc=1474752 }}
  • {{cite journal |last=Sadekar |first=Sumedha |last2=Raymond |first2=Jason |last3=Blankenship |first3=Robert E. |year=2006 |title=Conservation of Distantly Related Membrane Proteins: Photosynthetic Reaction Centers Share a Common Structural Core |journal=Molecular Biology and Evolution |volume=23 |issue=11 |pages=2001–2007 |doi=10.1093/molbev/msl079 |pmid=16887904}}
  • {{cite journal |last=Yokoyama |first=Shozo |last2=Radlwimmer |first2=F. Bernhard |year=2001 |title=The molecular genetics and evolution of red and green color vision in vertebrates |journal=Genetics |volume=158 |issue=4 |pages=1697–1710 |pmid=11545071 |doi= |pmc=1461741}}
  • {{cite journal |last=Racker |first=Efraim |last2=Stoeckenius |first2=Walther |year=1974 |title=Reconstitution of Purple Membrane Vesicles Catalyzing Light-driven Proton Uptake and Adenosine Triphosphate Formation |journal=Journal of Biological Chemistry |volume=249 |issue=2 |pages=662–663 |pmid=4272126 |doi=}}
  • {{cite journal |last=Kawaguchi |first=Riki |last2=Yu |first2=Jiamei |last3=Honda |first3=Jane |last4=Hu |first4=Jane |last5=Whitelegge |first5=Julian |last6=Ping |first6=Peipei |last7=Wiita |first7=Patrick |last8=Bok |first8=Dean |last9=Sun |first9=Hui |year=2007 |title=A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A |journal=Science |volume=315 |issue=5813 |pages=820–825 |doi=10.1126/science.1136244 |pmid=17255476|bibcode = 2007Sci...315..820K }}
  • {{cite journal |last=Amora |first=Tabitha L. |last2=Ramos |first2=Lavoisier S. |last3=Galan |first3=Jhenny F. |last4=Birge |first4=Robert R. |year=2008 |title=Spectral Tuning of Deep Red Cone Pigments |journal=NIH Public Access Author Manuscript |volume= 47|issue= 16|pages= 4614–20|pmid=18370404 |doi=10.1021/bi702069d |pmc=2492582}}
  • {{cite journal |last=Send |first=Robert |last2=Sundholm |first2=Dage |year=2007 |title=Stairway to the conical intersection: A computational study of retinal isomerization |journal=Journal of Physical Chemistry A |volume=111 |issue=36 |pages=8766–8773 |doi=10.1021/jp073908l |pmid=17713894|bibcode=2007JPCA..111.8766S }}
  • {{cite journal |last=Salom |first=David |last2=Lodowski |first2=David T. |last3=Stenkamp |first3=Ronald E. |last4=Le Trong |first4=Isolde |last5=Golczak |first5=Marcin |last6=Jastrzebska |first6=Beata |last7=Harris |first7=Tim |last8=Ballesteros |first8=Juan A. |last9=Palczewski |first9=Krzysztof |year=2006 |title=Crystal structure of a photoactivated deprotonated intermediate of rhodopsin |journal=Proceedings of the National Academy of Sciences |volume=103 |issue=44 |pages=16123–16128 |doi=10.1073/pnas.0608022103 |pmid=17060607 |pmc=1637547|bibcode = 2006PNAS..10316123S }}
{{refend}}

External links

  • First Steps of Vision - National Health Museum
  • Vision and Light-Induced Molecular Changes
  • Retinal Anatomy and Visual Capacities
  • Retinal
{{Carotenoids}}אופסין#רטינל

6 : Aldehydes|Vision|Signal transduction|Apocarotenoids|Photosynthetic pigments|Cyclohexenes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 16:21:50