请输入您要查询的百科知识:

 

词条 Return-to-zero
释义

  1. Return-to-zero in optical communication

     Return to zero, inverted 

  2. Bipolar return-to-Zero (bipolar RZ)

  3. See also

  4. References

  5. Further reading

{{other uses|Return to Zero (disambiguation)}}{{noref|date=April 2018}}

Return-to-zero (RZ or RTZ) describes a line code used in telecommunications signals in which the signal drops (returns) to zero between each pulse. This takes place even if a number of consecutive 0s or 1s occur in the signal. The signal is self-clocking. This means that a separate clock does not need to be sent alongside the signal, but suffers from using twice the bandwidth to achieve the same data-rate as compared to non-return-to-zero format.

The "zero" between each bit is a neutral or rest condition, such as a zero amplitude in pulse amplitude modulation (PAM), zero phase shift in phase-shift keying (PSK), or mid-frequency in frequency-shift keying (FSK).

That "zero" condition is typically halfway between the significant condition representing a 1 bit and the other significant condition representing a 0 bit.

Although return-to-zero (RZ) contains a provision for synchronization, it still has a DC component resulting in “baseline wander” during long strings of 0 or 1 bits, just like the line code non-return-to-zero.

Return-to-zero in optical communication

Return to zero, inverted

Return-to-zero, inverted (RZI) is a method of mapping for transmission. The two-level RZI signal has a pulse (shorter than a clock cycle) if the binary signal is 0, and no pulse if the binary signal is 1. It is used (with a pulse 3/16 of a bit long) by the IrDA serial infrared (SIR) physical layer specification. Required bandwidth for this kind of modulation is: BW = R(data rate).

Bipolar return-to-Zero (bipolar RZ)

{{main|bipolar encoding}}

For bipolar return-to-zero (bipolar RZ), a binary one is encoded as +V volts, a binary zero is encoded as -V volts, and 0 volt is used to provide padding and separation between bits.

Bipolar return-to-zero encoding is used by the ARINC 429 bus.

See also

Other line codes that have 3 states:

  • Hybrid ternary code
  • Bipolar encoding
  • MLT-3 encoding
  • 4B3T

References

Further reading

  • {{cite web |title=Digital Magnetic Tape Recording |author-first=John J. G. |author-last=Savard |date=2018 |orig-year=2006 |work=quadibloc |url=http://www.quadibloc.com/comp/tapeint.htm |access-date=2018-07-16 |dead-url=no |archive-url=https://web.archive.org/web/20180702234956/http://www.quadibloc.com/comp/tapeint.htm |archive-date=2018-07-02}}
{{Bit-encoding}}{{DEFAULTSORT:Return-To-Zero}}

2 : Encodings|Line codes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 0:48:01