词条 | Glaeser's continuity theorem |
释义 |
In mathematical analysis, Glaeser's continuity theorem, is a characterization of the continuity of the derivative of the square roots of functions of class . It was introduced in 1963 by Georges Glaeser,[1] and was later simplified by Jean Dieudonné.[2] The theorem states: Let be a function of class in an open set U contained in , then is of class in U if and only if its partial derivatives of first and second order vanish in the zeros of f. References1. ^G. Glaeser, "Racine carrée d'une fonction différentiable", Annales de l'Institut Fourier 13, no 2 (1963), 203–210 : article 2. ^J. Dieudonné, "Sur un théorème de Glaeser", J. Analyse math. 23 (1970), 85–88 : Résumé Zbl, article p.85, article p.86, article p.87 (the p. 88, not shown on the free preview contains the reference to Glaeser) 2 : Mathematical analysis|Theorems |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。