请输入您要查询的百科知识:

 

词条 Richard Schroeppel
释义

  1. See also

  2. References

  3. External links

Richard C. Schroeppel (born 1948) is an American mathematician born in Illinois. His research has included magic squares, elliptic curves, and cryptography. In 1964, Schroeppel won first place in the United States among over 225,000 high school students in the Annual High School Mathematics Examination, a contest sponsored by the Mathematical Association of America and the Society of Actuaries.[1] In both 1966 and 1967, Schroeppel scored among the top 5 in the U.S. in the William Lowell Putnam Mathematical Competition.[2] In 1973 he discovered that there are 275305224 normal magic squares of order 5.[3] In 1998–1999 he designed the Hasty Pudding Cipher which was a candidate for the Advanced Encryption Standard, and he is one of the designers of the SANDstorm hash, a submission to the NIST SHA-3 competition.

Among other contributions, Schroeppel was the first to recognize the sub-exponential running time of certain factoring algorithms. While not entirely rigorous, his proof that Morrison and Brillhart's continued fraction factoring algorithm ran in roughly steps was an important milestone in factoring and laid a foundation for much later work, including the current "champion" factoring algorithm, the Number Field Sieve.

Schroeppel analyzed Morrison and Brillhart's algorithm,[4] and saw how to cut the run time to roughly by modifications which allowed sieving. This improvement doubled the size of numbers which could be factored in a given amount of time. Coming around the time of the RSA algorithm, which depends on the difficulty of factoring for its security, this was a critically important result.

Due to Schroeppel's apparent prejudice against publishing (though he freely circulated his ideas within the research community), and in spite of Pomerance noting that his quadratic sieve factoring algorithm owed a debt to Schroeppel's earlier work, the latter's contribution is often overlooked. (See the section on "Smooth Numbers" on pages 1476-1477 of Pomerance's "A Tale of Two Sieves," Notices of the AMS, Vol. 43, No. 12, December 1996.)

Schroeppel's Erdős number is 2.

[5]

See also

  • HAKMEM
  • Counter machine

References

1. ^"Lane Student Wins Top U.S. Math Award"{{cite web|url=http://archives.chicagotribune.com/1964/06/20/page/22/article/lane-student-wins-top-u-s-math-award |title=Chicago Tribune, June 20, 1964}}
2. ^{{cite web|url=http://www.maa.org/awards/putnam.html |title=The Mathematical Association of America's William Lowell Putnam Competition}}
3. ^{{Cite OEIS |A006052 |Number of magic squares of order n}}
4. ^{{cite journal|last = Morrison|first = Michael A.|author2=Brillhart, John|title = A Method of Factoring and the Factorization of F7|journal = Mathematics of Computation|url = http://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0371800-5/|volume = 29|issue = 129| pages = 183–205|date=January 1975|doi = 10.2307/2005475|jstor = 2005475|publisher = American Mathematical Society}}
5. ^{{cite web|publisher=Oakland University|title=Erdős Number Project|url=https://files.oakland.edu/users/grossman/enp/Erdos2.html|accessdate=10 February 2017}}

External links

  • Brief autobiographical outline
  • Richard Schroeppel's website
{{authority control}}{{DEFAULTSORT:Schroeppel, Richard}}{{US-mathematician-stub}}

10 : 1948 births|20th-century American mathematicians|21st-century American mathematicians|American cryptographers|Modern cryptographers|Putnam Fellows|Magic squares|Living people|Massachusetts Institute of Technology alumni|International Association for Cryptologic Research fellows

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 0:13:57