词条 | Harcourt's theorem |
释义 |
The theorem is named after J. Harcourt, an Irish professor.[2] StatementLet a triangle be given with vertices A, B, and C, opposite sides of lengths a, b, and c, area K, and a line that is tangent to the triangle's incircle at any point on that circle. Denote the signed perpendicular distances of the vertices from the line as a ', b ', and c ', with a distance being negative if and only if the vertex is on the opposite side of the line from the incenter. Then Degenerate caseIf the tangent line contains one of the sides of the triangle, then two of the distances are zero and the formula collapses to the familiar formula that twice the area of a triangle is a base (the coinciding triangle side) times the altitude from that base. ExtensionIf the line is instead tangent to the excircle opposite, say, vertex A of the triangle, then[1]{{rp|Thm.3}} Dual propertyIf rather than a', b', c' referring to distances from a vertex to an arbitrary incircle tangent line, they refer instead to distances from a sideline to an arbitrary point, then the equation remains true.[3]{{rp|p. 11}} References1. ^1 {{citation | last1 = Dergiades | first1 = Nikolaos | last2 = Salazar | first2 = Juan Carlos | journal = Forum Geometricorum | mr = 2004117 | pages = 117–124 | title = Harcourt's theorem | url = http://forumgeom.fau.edu/FG2003volume3/FG200313.pdf | volume = 3 | year = 2003}}. 2. ^{{citation|title=Exercises de géométrie: comprenant l'exposé des méthodes géométriques et 2000 questions résolues|series=Cours de mathématiques elementaires|first=F.|last=G.-M.|edition=5th|publisher=Maison A. Mame et fils (Tours) & J. de Gigord (Paris)|year=1912|page=750|url=http://quod.lib.umich.edu/u/umhistmath/ACV3924.0001.001/780|contribution=Théorème de Harcourt|language=French}}. 3. ^Whitworth, William Allen. Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Forgotten Books, 2012 (orig. Deighton, Bell, and Co., 1866). http://www.forgottenbooks.com/search?q=Trilinear+coordinates&t=books 3 : Circles|Triangle geometry|Theorems in geometry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。