请输入您要查询的百科知识:

 

词条 Hasse derivative
释义

  1. Definition

  2. Properties

  3. References

In mathematics, the Hasse derivative is a generalisation of the derivative which allows the formulation of Taylor's theorem in coordinate rings of algebraic varieties.

Definition

Let k[X] be a polynomial ring over a field k. The r-th Hasse derivative of Xn is

if nr and zero otherwise.[1] In characteristic zero we have

Properties

The Hasse derivative is a generalized derivation on k[X] and extends to a generalized derivation on the function field k(X),[1] satisfying an analogue of the product rule

and an analogue of the chain rule.[2] Note that the are not themselves derivations in general, but are closely related.

A form of Taylor's theorem holds for a function f defined in terms of a local parameter t on an algebraic variety:[3]

References

1. ^Goldschmidt (2003) p.28
2. ^Goldschmidt (2003) p.29
3. ^Goldschmidt (2003) p.64
  • {{cite book | last=Goldschmidt | first=David M. | title=Algebraic functions and projective curves | series=Graduate Texts in Mathematics | volume=215 | location=New York, NY | publisher=Springer-Verlag | year=2003 | isbn=0-387-95432-5 | zbl=1034.14011 }}
{{algebra-stub}}

1 : Differential algebra

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 2:37:24