词条 | Robert W. Wood |
释义 |
|birth_name = Robert Williams Wood |image =Robert Williams Wood.png |birth_date = May 2, 1868 |birth_place = Concord, Massachusetts, United States |death_date = {{death date and age|1955|8|11|1868|5|2}} |death_place = Amityville, New York, United States |residence = |citizenship = |nationality = American |ethnicity = |field = Physics |work_institutions = |education = Roxbury Latin School |alma_mater = Harvard University Massachusetts Institute of Technology University of Chicago |doctoral_advisor = |doctoral_students = |known_for = {{Plainlist|
|influences = |influenced = |prizes ={{Plainlist|
|religion = |footnotes = |signature = }}Robert Williams Wood (May 2, 1868 – August 11, 1955) was an American physicist and inventor. He is often cited as being a pivotal contributor to the field of optics and a pioneer of infrared and ultraviolet photography. Wood's patents and theoretical work inform modern understanding of the nature and physics of ultraviolet radiation, and made possible the myriad uses of UV-fluorescence which became popular after World War I.[1][2][3][4] LifeBorn in Concord, Massachusetts, Wood attended The Roxbury Latin School with the initial intent of becoming a priest. However, he decided to study optics instead when he witnessed a rare glowing aurora one night and believed the effect to be caused by "invisible rays". In his pursuit to find these "invisible rays", Wood studied and earned several degrees in physics from Harvard University, the Massachusetts Institute of Technology, and the University of Chicago. From 1894 to 1896, he worked with Heinrich Rubens at the Berlin University. Dr. Wood returned to the U.S.A., where he taught briefly at the University of Wisconsin and eventually became a full-time professor of "optical physics" at Johns Hopkins University from 1901 until his death. He worked closely with Alfred Lee Loomis at Tuxedo Park, New York.[5][6] He wrote many articles on spectroscopy, phosphorescence and diffraction. He is best known for his work in ultraviolet light. Another of his claims to fame was his debunking of N-rays in 1904. The French physicist Prosper-René Blondlot claimed to have discovered a new form of radiation similar to X-rays, which he named N-rays. Some physicists reported having successfully reproduced his experiments; others reported that they had failed. Visiting Blondlot's laboratory at the behest of the journal Nature, Wood surreptitiously removed an essential prism from Blondlot's apparatus during a demonstration. The effect did not vanish, showing that N-rays had always been self-deception on Blondlot's part.[7] Wood identified an area of very low ultraviolet albedo (reflectivity, that is most of the ultraviolet is absorbed) in the Aristarchus Plateau region of the Moon, one that he suggested was due to high sulfur content.[8] The area continues to be called Wood's Spot.[9] In 1909, Wood constructed the first practical liquid mirror astronomical telescope, by spinning mercury to form a paraboloidal shape, and investigated its benefits and limitations.[10] Wood has been described as the "father of both infrared and ultraviolet photography".[11] Though the discovery of electromagnetic radiation beyond the visible spectrum and the development of photographic emulsions capable of recording them predate Dr. Wood, he was the first to intentionally produce photographs with both infrared and ultraviolet radiation.[12] In 1903 he developed a filter, Wood's glass, that was opaque to visible light but transparent to both ultraviolet and infrared, and is used in modern-day black lights.[11] He used it for ultraviolet photography but also suggested its use for secret communication.[11] He was also the first person to photograph ultraviolet fluorescence.[11][12] He also developed an ultraviolet lamp, which is widely known as the Wood's lamp in medicine. The slightly surreal glowing appearance of foliage in infrared photographs is called the Wood effect.[13] Dr. Wood also authored nontechnical works. In 1915, Wood co-wrote a science fiction novel, The Man Who Rocked the Earth, along with Arthur Train.[14] Its sequel, The Moon Maker, was published the next year.[15] Wood also wrote and illustrated two books of children's verse, How to Tell the Birds from the Flowers (1907), and Animal Analogues (1908). Wood also took part in the investigation of several crimes including the Wall Street bombing.[12] Dr. Wood married Gertrude Hooper Ames in 1892 in San Francisco. She was the daughter of Pelham Warren and Augusta Hooper (Wood) Ames, and the granddaughter of William Northey Hooper and the Massachusetts Supreme Court justice Seth Ames. Dr. Wood died in Amityville, New York.[16] Contributions to ultrasoundAlthough physical optics and spectroscopy were Wood's main areas of study, he made substantial contributions to the field of ultrasound as well. His main contributions were photographing sound waves and working with Alfred Lee Loomis in the development of power ultrasonics. Photography of sound wavesHis first contribution to the field of ultrasonics was from the photography of sound waves. Wood's primary research area was physical optics, but he found himself confronted with the problem of demonstrating to his students the wave nature of light without resorting to mathematical abstractions, for which they cared little. He therefore resolved to photograph the sound waves given off by an electric spark as an analogy to light waves.[17] An electric spark was used because it produces not a wave train, but a single wavefront, making it much simpler to study and visualize. Although he did not pioneer that method, an honour belonging to August Toepler, he did more detailed studies of the shock waves and their reflections than Toepler.[18] High-powered ultrasoundAfter having made these contributions, Wood returned to physical optics, his interest in "supersonics" lying dormant for quite some time. With the entry of the United States into World War I, Wood, as with many other scientists, was asked to help with the war effort. After a handful of other ideas, Wood requested to devote his attentions to the work of Paul Langevin, who was investigating ultrasound as a method for detecting submarines. While in Langevin's lab, he observed that high-powered ultrasonic waves can cause the formation of air bubbles in water, and how fish would be killed or a hand suffer searing pain if put into the beam line. All of this piqued his interest in high powered-ultrasound. Still later, in 1926, Wood recounted Langevin's experiments to Loomis, and the two of them collaborated on high intensity ultrasound experiments, and this turned out to be Wood's primary contribution to the field of ultrasonics. The experimental setup was impressive, and it was driven by a two kW oscillator that had been designed for a furnace, allowing for the generation of very high output powers. The frequencies they used ran from 100 kHz to 700 kHz.[19] The most impressive display of the output power of the setup is perhaps how strongly the output sound waves can fight even against gravity. When the quartz plate transducer was suspended in oil, it would make a mound of oil up to {{convert|7|cm|0}} higher than the rest of the surface of the oil. While at low powers, the mound was low and lumpy, at high powers, it would rise up to the full 7 cm, "its summit erupting oil drops like a miniature volcano."[19] These drops could reach heights of {{convert|30|-|40|cm|0}}. Similarly, when an {{convert|8|cm|0|adj=on}} diameter glass plate was placed on the surface of the oil, up to {{convert|150|g|0}} of external weight could be placed on top of the glass plate, and supported by the strength of the ultrasound waves alone. This was achieved by the waves reflecting and re-reflecting between the transducer and the glass plate, allowing each generated wave to impart its momentum to the glass plate multiple times. When attempting to take the temperature of the mound of erupting oil with a glass thermometer, Wood and Loomis discovered another set of effects quite serendipitously. They note that although the mercury in the thermometer only read {{convert|25|C}}, the glass was so hot that it was painful to touch, and they noticed that the pain became unbearable if they tried to squeeze the thermometer tightly. Even if very fine thread of glass only {{convert|0.2|mm|2}} in diameter and {{convert|1|m}} long was put in the oil at one end, holding a bulge in the glass at the other end still resulted in a groove being left in the skin and the skin being seared, with painful and bloody blisters forming that lasted several weeks, showing the ultrasound generated was quite powerful indeed.[19] In a similar vein, when a glass rod was put lightly in contact with dried woodchips, the rod would burn the wood and cause it to smoke, or if pressed against a woodchip, it would quickly burn through the chip, leaving behind a charred hole. All the while the glass rod remained cool, with the heating confined to the tip. When a glass rod is pressed lightly against a glass plate, it etches the glass plate, while if it is pressed, it bores right through the plate. Microscopic examinations showed that the debris given off includes finely powdered glass and globules of molten glass.[19] Wood and Loomis also investigated heating liquids and solids internally with high intensity ultrasound. While the heating of liquids was relatively straightforward, they were able to heat an ice cube such that the centre melted before the outside. The ability to heat or damage objects internally is now the basis of modern therapeutic ultrasound. Turning their attention to the effects of high intensity ultrasound on living matter, Wood and Loomis observed ultrasound tearing fragile bodies to pieces. Cells were generally torn apart at sufficiently high exposure, although very small ones, like bacteria, managed to avoid destruction. Frogs, mice or small fish were killed after one to two minutes of exposure, replicating Langevin's earlier observation.[19] In addition to the above, Wood and Loomis investigated the formation of emulsions and fogs, crystallization and nucleation, chemical reactions, interference patterns, and standing waves in solids and liquids under high intensity ultrasound. After completing this broad array of experiments, Wood returned to optics, to never really touch ultrasonics in any depth again. Loomis, however, would go on to advance the science further with other collaborators.[20] MiscellaneousWood was the last man to take photographs of the flying Otto Lilienthal, just one week before his fatal crash.[21] Wood is sometimes credited as the inventor of tear gas.[22] Honors
Legacy
BibliographyPatents
Works by Wood
About Wood
References1. ^1 2 {{Cite journal | last1 = Dieke | first1 = G. H. | doi = 10.1098/rsbm.1956.0022 | title = Robert Williams Wood 1868-1955 | journal = Biographical Memoirs of Fellows of the Royal Society | volume = 2 | pages = 326–326 | year = 1956 | jstor = 769493| pmid = | pmc = }} 2. ^1 Wood, Robert W. (13 July 1920). "Flash-telescope." U.S. Patent No. 1,346,580. Washington, DC: U.S. Patent and Trademark Office. 3. ^1 WOOD, ROBERT W. (22 May 1923). "Optical Method." U.S. Patent No. 1,455,825. Washington, DC: U.S. Patent and Trademark Office. 4. ^1 Wood, Robert W. (29 June 1926). "Optical toy." U.S. Patent No. 1,590,463. Washington, DC: U.S. Patent and Trademark Office. 5. ^{{Cite journal| last1 = Roberts | first1 = W. C.| title = Facts and ideas from anywhere| journal = Proceedings (Baylor University. Medical Center)| volume = 23| issue = 3| pages = 318–332| year = 2010| pmid = 21240325| pmc = 2900993}} 6. ^{{cite book |last1=Conant |first1=Jennet |authorlink1=Jennet Conant |title=Tuxedo Park, A Wall Street Tycoon and the Secret Palace of Science That Changed the Course of World War II|year=2002|publisher=Simon & Schuster |location=New York, NY |isbn= 0-684-87287-0 }} 7. ^{{Cite journal | last1 = Wood | first1 = R. W. | title = The n-Rays | doi = 10.1038/070530a0 | journal = Nature | volume = 70 | issue = 1822 | pages = 530 | year = 1904 | pmid = | pmc = |bibcode = 1904Natur..70..530W }} Quote: "After spending three hours or more in witnessing various experiments, I am not only unable to report a single observation which appeared to indicate the existence of the rays, but left with a very firm conviction that the few experimenters who have obtained positive results, have been in some way deluded. A somewhat detailed report of the experiments which were shown to me, together with my own observations, may be of interest to the many physicists who have spent days and weeks in fruitless efforts to repeat the remarkable experiments which have been described in the scientific journals of the past year." 8. ^{{cite journal|author=Wood, RW|year=1912| title=Selective absorption of light on the Moon's surface and lunar petrography|journal=Astrophysical Journal|volume=36| page=75|doi=10.1086/141953|bibcode = 1912ApJ....36...75W }} 9. ^{{Cite journal | last1 = Zisk | first1 = S. H. | last2 = Hodges | first2 = C. A. | last3 = Moore | first3 = H. J. | last4 = Shorthill | first4 = R. W. | last5 = Thompson | first5 = T. W. | last6 = Whitaker | first6 = E. A. | last7 = Wilhelms | first7 = D. E. | title = The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations | doi = 10.1007/BF00566853 | journal = The Moon | volume = 17 | pages = 59 | year = 1977 | pmid = | pmc = |bibcode = 1977Moon...17...59Z }} 10. ^{{cite journal |author=Gibson, B. K. |date=August 1991 |url=http://citeseer.ist.psu.edu/cache/papers/cs/2683/http:zSzzSzwww-astro.physics.ox.ac.ukzSz~bkgzSzLMT_history.pdf/liquid-mirror-telescopes-history.pdf |title=Liquid mirror telescopes: history |journal=Journal of the Royal Astronomical Society of Canada |volume=85 |pages=158–171 |format=PDF |issue=4|bibcode = 1991JRASC..85..158G }} 11. ^1 2 3 {{cite web |last = Williams |first = Robin |author2 = Gigi Williams |title = Wood, Professor Robert Williams |work = Pioneers of Invisible Radiation Photography |publisher = www.rmit.edu.au RMIT Online University, Melbourne, AU |year = 2002 |url = http://www.cartage.org.lb/en/themes/arts/photography/fieldskinds/scientificph/medscient/pioneers/wood/wood.htm |doi = |accessdate = January 16, 2013 |deadurl = yes |archiveurl = https://web.archive.org/web/20130904052458/http://www.cartage.org.lb/en/themes/arts/photography/fieldskinds/scientificph/medscient/pioneers/wood/wood.htm |archivedate = September 4, 2013 |df = }} 12. ^1 2 3 4 5 6 7 8 9 10 Seabrook (1941) 13. ^{{cite web |title=Wood effect |work=PhotoNotes.org: Dictionary of Film and Digital Photography |url=http://photonotes.org/cgi-bin/entry.pl?id=Woodeffect |accessdate=2007-08-13 |deadurl=yes |archiveurl=https://web.archive.org/web/20070927005157/http://photonotes.org/cgi-bin/entry.pl?id=Woodeffect |archivedate=2007-09-27 |df= }} 14. ^Train & Wood (1915) 15. ^Train & Wood (1916) 16. ^[Anon.] (1980) 17. ^{{Cite journal | last1 = Wood | first1 = R. W. | title = The Photography of Sound-Waves and the Demonstration of the Evolutions of Reflected Wave Fronts with the Cinematograph | doi = 10.1038/062342a0 | journal = Nature | volume = 62 | issue = 1606 | pages = 342 | year = 1900 | pmid = | pmc = |bibcode = 1900Natur..62..342W }} 18. ^Krehl, P. & Engemann, S. (1995) "Toepler, August - The First Who Visualized Shock-waves." Shock waves, 5: 1-2, 1-18 19. ^1 2 3 4 Wood, R. W. & Loomis, A. L. (1927) "The physical and biological effects of high-frequency sound-waves of great intensity." Philosophical Magazine Series 7. 4(22): 416-436. {{DOI|10.1080/14786440908564348}} 20. ^Graff, K. F. "A History of Ultrasonics", in Physical Acoustics, Volume XV. New York: Academic Press, 1982. 41-46 21. ^{{cite web |title=photographs taken by Wood on 1896, August 2. |work=Otto-Lilienthal-Museum archives |url=http://www.lilienthal-museum.de/olma/eba1896.htm |accessdate=2015-08-23 }} 22. ^{{cite web|url=https://books.google.com/books?id=XkxMAQAAMAAJ&pg=PA514&dq=%22tear+gas%22&hl=en&sa=X&ved=0ahUKEwjPnZr15fTLAhWowYMKHXtiAEAQ6AEITzAI#v=onepage&q=%22tear+gas%22&f=false|title=Information: A Monthly Digest of Current Events and World Progress Covering Jan. 1915-May 1917|date=January 13, 2018|publisher=R.R. Bowker Company|access-date=January 13, 2018|via=Google Books}} 23. ^{{cite web | url=http://www.royalsoc.ac.uk/page.asp?id=1747 | title=Rumford archive winners 1988–1900 | work=The Royal Society | accessdate=2007-08-13 }} 24. ^{{cite web | url=http://www.nasonline.org/about-nas/awards/henry-draper-medal.html | work=National Academy of Sciences | title=Awards: Henry Draper Medal | accessdate=2007-08-12 }} 25. ^{{cite book |author1=Cocks, E. E. |author2=Cocks, J. C. |lastauthoramp=yes | year=1995 | title=Who's Who on the Moon: A Biographical Dictionary of Lunar Nomenclature | publisher=Tudor Publishers | isbn=0-936389-27-3 }} External links
14 : 1868 births|1955 deaths|Harvard University alumni|University of Chicago alumni|Massachusetts Institute of Technology alumni|American physicists|Optical physicists|20th-century American novelists|American male novelists|American science fiction writers|Foreign Members of the Royal Society|Recipients of awards from the United States National Academy of Sciences|Roxbury Latin School alumni|20th-century American male writers |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。