词条 | History of early modern period domes |
释义 |
DevelopmentsThe construction of domes in the sixteenth and seventeenth centuries relied primarily on empirical techniques and oral traditions rather than the architectural treatises of the times, which avoided practical details. This was adequate for domes up to medium size, with diameters in the range of 12 to 20 meters. Materials were considered homogeneous and rigid, with compression taken into account and elasticity ignored. The weight of materials and the size of the dome were the key references. Lateral tensions in a dome were counteracted with horizontal rings of iron, stone, or wood incorporated into the structure.{{sfn|Fusco|Villanni|2003|p=580–581}} Traditional geometric rules of proportion for domes were applied by master builders regardless of size, but helped new domes be built in forms known to be safe. The structural behavior of previous domed buildings acted as full-scale models to inform new ones and small scale models of new projects were also relied upon.{{sfn|Fernández|Hernández-Ros|1989}} In the sixteenth and seventeenth centuries, many Renaissance and Baroque elliptical and oval plan domes were built over rectangular naves, using brick in Italy and stone in Spain. Later German oval domes in the Rococo style used different combinations of geometry. Elliptical dome traces were published by Durero (1525), Serlio (1545), and De L'Orme (1561) along with practical methods of achieving the shape using circular arcs, the technique used from the time of the ancient Romans.{{sfn|Escrig|Cobreros|Valcarcel|1997|pp=355-357}} Alonso de Vandelvira published a description of the geometry of oval domes around 1580 with orthogonal projections of meridian and parallel rib curves. Oval domes often incorporated both elliptical and oval or semicircular curves and this ambiguity is reflected in the architectural literature. Builders relied on graphical or empirical solutions to such geometric problems. In 1640, mathematician Paul Guldin established that the "elongated semicircle" of traditional practice is an ellipse.{{sfn|Duvernoy|2015|p=448-450}} Although some recommendations for the profile of a dome can be found in treatises from earlier centuries, the traditional geometric and proportional techniques for masonry domes and lanterns were first detailed in 1694 by Carlo Fontana in his famous treatise Il Tempio Vaticano e sua Origine. Building on this, Bernardo Antonio Vittone published Istruzioni elementari dell’architettura civile in 1760, in which he recommended using ogival or ellipsoidal profiles to increase the proportional height of domes and increasing the angle at which they intersected with their lanterns, for both structural and aesthetic reasons. To counter the negative impact this raised profile has on the interior appearance, domes with two or three layers of vaults were built, with openings in the lower levels to admit light. Analytical approaches were also being developed and debated in the eighteenth century, particularly between French and Italian mathematicians and architects, but were considered too theoretical to be used in construction.{{sfn|Cavalagli|Gusella|2014}} Over the course of the seventeenth and eighteenth centuries, developments in mathematics and the study of statics led to a more precise formalization of the ideas of the traditional constructive practices of arches and vaults, and there was a diffusion of studies on what was considered the most stable form for these structures: the catenary curve.{{sfn|Bagliani|2009}} In the eighteenth century, the study of dome structures changed radically, with domes being considered as a composition of smaller elements, each subject to mathematical and mechanical laws and easier to analyse individually, rather than being considered as whole units unto themselves.{{sfn|Bagliani|2009}} In 1734, mathematician Pierre Bouguer (and later others) argued that the dome could be thought of as sliced into a series of independent wedged-shaped segments meeting as arches. Therefore, a dome as a whole was stable if each constituent arch was stable and analysis of a dome could be performed the same way as analysis of an arch.{{sfn|Tempesta|Paradiso|Galassi|Pieroni|2015|p=85-86}} Sixteenth centuryItalian Renaissance{{main|History of Italian Renaissance domes}}A combination of barrel vaults, pendentives, drum, and dome developed as the characteristic structural forms of large Renaissance churches following a period of innovation in the later fifteenth century.{{sfn|Betts|1993|p=5}} Florence was the first Italian city to develop the new style, followed by Rome, and then Venice.{{sfn|Nuttgens|1997|p=181}} Bramante's 1505–6 projects for a wholly new St. Peter's Basilica mark the beginning of the displacement of the Gothic ribbed vault with the combination of dome and barrel vault, which proceeded throughout the sixteenth century.{{sfn|Betts|1993|p=5-7}} Bramante's studies for new church designs for St. Peter's coincided with Leonardo da Vinci's studies of centrally planned churches while they were both at the court of Ludovico Sforza in Milan and they may have collaborated. Their studies may have influenced many of the centrally planned churches built in the first half of the sixteenth century, such as the church of Santa Maria della Consolazione (started around 1508) and the church of the Madonna di San Biagio at Montepulciano (1518-1545).{{sfn|Duvernoy|2015|p=426-427}} The traditional use of timburios, tower-like structures that conceal the shape of domes externally, continued to be used through the first half of the sixteenth century to cover the domes of all major new religious buildings in Milan. Examples include the church and the sacristy of Santa Maria presso San Satiro, the Trivulzio chapel in the church of San Nazaro in Brolo (1547), and the churches of Santa Maria delle Grazie, Santa Maria presso San Celso (started in 1497), Santa Maria della Passione (1549-1550), and San Vittore al Corpo (1568-1573). The use of drums beneath domes began in Milan following the trend in Rome and central Italy. They improved lighting for domes but also introduced additional structural problems.{{sfn|Giustina|2003|pp=1034, 1040}} The spread of the Renaissance style dome outside of Italy began with central Europe. Although there was often a stylistic delay of a century or two, Germany and Poland have a number of important examples, such as the Polish Sigismund's Chapel in Kraków (1517–1533).{{sfn|Melaragno|1991|p=73}} Eastern EuropeRussian architecture strongly influenced the many bulbous domes of the wooden churches of Bohemia and Silesia, such as the 1506 wooden church tower in Pniów and the church of St. Anna in Czarnowancz. This type blended into German rural architecture such that, in Bavaria, bulbous domes less resemble Dutch models than Russian ones. The polygonal domes on the towers of the Frauenkirche in Munich from about 1530 and the hexagonal domes of the town hall of Augsburg from 1615 are examples. Domes like these gained in popularity in central and southern Germany and in Austria in the seventeenth and eighteenth centuries, particularly in the Baroque style. Dresden in particular has outstanding examples, including the lantern over the large central dome of the Dresden Frauenkirche (1726–39).{{sfn|Born|1944|p=218-220}} A château in Dresden with a tower dome from 1535 was remodeled from 1547 to 1557 to have a series of bell-shaped domes, according to a wooden model.{{sfn|Bažant|2008|p=35}} In the early sixteenth century, the lantern of the Italian dome had spread to Germany as a wood and copper cupola called the welsche Haube ("Italian hood") and this structure gradually adopted the bulbous cupola from the Netherlands. The first such example was on the tower of the town hall of Emden (1574–76) and other early examples were on the town halls of Brzeg, Silesia (1570–76), Rothenburg ob der Tauber (1572–78), and Lemgo (c. 1589). Early examples in Danzig, such as the tower of the town hall (1561) and the tower of the church of St. Catherine (1634), show Dutch and possibly Russian influence.{{sfn|Born|1944|p=214–215}} Onion-shaped domes appeared widely on royal residences in the middle of the sixteenth century. In addition to those on the eastern part of Prague Castle, royal residences in Madrid, London, Vienna, and Kraków had them, always as part of Italian classical forms.{{sfn|Bažant|2008|p=35}} In Poland, Orthodox and Greek Catholic churches maintained the forms developed during the Middle Ages, such as Greek cross plans or longitudinal plans in three parts with each part covered by a dome, but with updated styling. Examples include the Walachian church of Paulo Dominici (1591-1629), the Church of St. Onufry in Husiatyn (c. 1600), and the Chapel of the Three Saints (after 1671).{{sfn|Krasny|1999|p=92}} Royal house of HabsburgHabsburg Netherlands{{further|Habsburg Netherlands}}In the fifteenth century, pilgrimages to and flourishing trade relations with the Near East had exposed the Low Countries of northwest Europe to the use of bulbous domes in the architecture of the Orient and they were adopted in the architecture of the Netherlands. In Ghent, an octagonal staircase tower for the Church of St. Martin d'Ackerghem, built in the beginning of the sixteenth century, had a bulbous cupola similar to a Syrian minaret. These cupolas were made of wood covered with copper, as were the examples over turrets and towers in the Netherlands at the end of the fifteenth century, many of which have been lost. The earliest example from the Netherlands that has survived is the bulbous cupola built in 1511 over the town hall of Middelburg. Multi-story spires with truncated bulbous cupolas supporting smaller cupolas or crowns became popular in the following decades.{{sfn|Born|1944|p=209-213}} The onion shape was used at the top of important sixteenth-century spires such as the Onze Lieve Vrouw Kerk in Haarlem, the 1566 Oude Kerk in Amsterdam, and the 1599 cheese market of Alkmaar.{{sfn|Schindler|1981|p=139}} PragueIn Prague, the welsche Haube was apparently little used, but the fully developed onion dome was prominent by the middle of the sixteenth century. The development of the onion shape in Prague architecture may have been an effort to blend Gothic forms with those from Italy, and may also indicate influence from the Netherlands. Drawings published in carpentry manuals and the prestigious association of onion spires with pilgrimage churches encouraged their adoption in the nearby regions of Bavaria, Southern Germany and the Austrian Empire.{{sfn|Schindler|1981|p=139, 142}} Drawings of the city of Prague from 1562 and 1606 show towers and spires capped with onion domes. They are seen on the Rosenberg Palace, the old town water tower, and the main spire of St. Vitus Cathedral (1561-1563), the design of which had been approved by Emperor Ferdinand in 1560.{{sfn|Schindler|1981|p=138}}{{sfn|Bažant|2008|p=34-35}} MilanMilan, between 1550 and 1650, initiated construction of domes for many important churches. Domes in the Lombard region were traditionally hidden externally by lantern towers called timburios, a technique dating from late Antiquity whose structural behavior was well known, but this began to change starting in the 1560s. Domes exposed externally, or "extradoxed", were proposed by architect Pellegrino Tibaldi for the church of church of San Fedele (1568–69), the church of San Sebastiano (1578-86), and the Sanctuary of Caravaggio (1571). However, the planned extradoxed dome of San Sebastiano had a timburio added and many domes continued to be planned with timburios from the outset.{{sfn|Giustina|2003|p=1033-1038; 1041}} Spain and its coloniesThe "Murcia Dome" over the Chapel of the Junterones in Murcia Cathedral, built in 1540 by Quijano, has a torical geometry achieved by the revolution of a transverse semicircular arch about the oblong plan's short axis.{{sfn|Escrig|Cobreros|Valcarcel|1997|pp=358}} In 1564, a dome on a drum was completed over the vestry of the church of San Miguel in Jerez de la Frontera, a rare Spanish example built before those of El Escorial. The domes over the church and towers of El Escorial, built between 1579 and 1582 as extradosed domes on drums, became a model for subsequent Spanish domes, particularly after Juan de Herrera's publication of the main dome's cross-section in 1589.{{sfn|López-Mozo|2013|p=96}}{{sfn|López-Mozo|2003|p=1321}} The main dome over the church is a stone spherical dome and lantern on a cylindrical drum and has an internal diameter of 18.94 meters. Smaller versions with internal diameters of 6.68 meters top the two church towers.{{sfn|López-Mozo|2003|pp=1321-1322}} The influence of the dome at El Escorial is evident in domes at the church of the College of Nosa Señora da Antiga in Monforte de Lemos (redesigned after 1592 to be extradosed and have a drum), Real Colegio Seminario del Corpus Christi in Valencia (altered to include a drum between 1595 and 1597), the church of San Pablo and San Justo in Granada (completed in 1622 with a similar drum), and in the domed tower at the Monastery of Irache. The similarities in the dome over Cerralbo Chapel at Ciudad Rodrigo, which does not have a drum, include the proportions of the dome thickness, the lantern diameter, and the use of horizontal stone courses in the lower portion of the dome up to 32 degrees, rather than radial courses.{{sfn|López-Mozo|2013|pp=96-98, 107}} During the Spanish colonization of the Americas, from the 16th to the 18th centuries, thousands of churches were built in Mexico. The churches vary, but surviving examples from central Mexico are typically on a latin cross plan with a brick dome on a drum at the crossing. Adobe was widely used in early examples but these buildings were often destroyed by earthquakes or replaced.{{sfn|Peña|Manzano|2015|pp=300-301}} Thick rib cross-vaulting in a dome-like shape was used in the 16th century. Most churches used a bell-gable instead of a bell tower, although stone bell towers were often added in later centuries, typically topped by a small hemispherical dome. Vaults and domes were usually built with brick and, like towers, were particularly vulnerable to earthquakes. Domes developed vertical cracks from the lateral movement and were more vulnerable than vaults because movement in the drums beneath them could increase the damage. A large amount of movement in a single event or the cumulative effect of multiple earthquakes could result in collapse. Only a few examples from the 16th century survive.{{sfn|Peña|Chávez|2016|pp=332, 334-335}} Alonso de Vandelvira's Tratado de Arquitectura, from around 1580, is the first Spanish scientific treatise and contains the first recorded definitions of the geometry of meridian and parallel ribs for six kinds of oval domes. It is evidence of the scientific and cultural exchange occurring with Italy in the late sixteenth and early seventeenth centuries. Early oval domes built in Spain in the second half of the sixteenth century include the crossing dome of the cathedral of Cordoba and the chapter house dome of Seville Cathedral.{{sfn|Duvernoy|2015|p=448, 450}} Vandelvira's late sixteenth century treatise included studies of sail vaults of various types, such as those with a system of crossed arches supporting the structure. The 1540 church at Cazalla, Sevilla has examples.{{sfn|Cobreros Vime|Vázquez-Vicente|1999|p=600}} Counter-ReformationChurches with oval plans begin to be built in the middle of the sixteenth century and oval or elliptical domes would become characteristic of Counter-Reformation architecture in the Baroque style.{{sfn|Bagliani|2009}} Many Italian examples of oval domes have semi-circular cross sections, which allowed for easier construction using semi-circular transverse centering. Vignola's oval plan church of Sant'Anna dei Palafrenieri was the first to be built within Rome, and was designed in 1572 with seven windows between the eight ribs in its oval dome. The windows introduced structural complications that Vignola had avoided in his first oval dome over the rectangular plan church of Sant'Andrea in Via Flaminia, but the restrictions of the site necessitated light from above. The oval plan church of San Giacomo degli Incurabili was started in 1592 by a student of Vignola's, Francesco Capriani, and finished by Carlo Maderno. It also has ribs between the six windows in its dome, but they are concealed on the interior. The design of this church would inspire others over the next two centuries, aided by the building activity of the many new religious orders founded between 1524 and 1621.{{sfn|Duvernoy|2015|pp=427, 437-438, 448, 450, and 454}} Toward the end of the sixteenth century, transepts with domes were popular in several Italian states and were featured in prominent churches such as the Abbey of Santa Giustina in Padua (begun in 1532), Mantua Cathedral (added after 1540), Church of the Gesù in Rome (1568–1580), and San Giorgio Maggiore in Venice (begun in 1566).{{sfn|Kurzej|2015|p=175–176}} As elements likely associated with Roman Catholic church buildings at this time, the use of domed transepts outside Italy may indicate partiality towards Roman Catholicism over Protestantism. Examples include a church in Dąbrowa Zielona (1554), a Jesuit church in Nieśwież (1586–1599), and a Jesuit church in Kraków.{{sfn|Kurzej|2015|p=175-176}} Seventeenth centuryGerman and Austrian influence resulted in many bulbous cupolas in Poland and Eastern Europe in the Baroque period, and rural church towers in the Austrian and Bavarian Alps still feature them.{{sfn|Born|1944|p=220}} Onion-shaped spires can be found in rural and pilgrimage churches in southern Germany, northeastern Italy, the former Czechoslovakia, Austria, and some of Poland, Hungary, and the former Yugoslavia.{{sfn|Schindler|1981|p=138}} Onion spires are predominant in Bavarian country churches, such as those on the three towers of the 1688 "Kappel" pilgimage church near Waldsassen by Abraham Leuthner and Georg Dientzenhofer, who had both worked in Prague. Onion domes over the Bavarian pilgrimage churches of Maria Birnbaum (1661–1682) and Westerndorf (1670) may also indicate influence from Prague through models in architectural design books, such as one by Abraham Leuthner. In other examples, such as the onion dome on the tower of St. Ulrich's and St. Afra's Abbey (1602), the influences are less clear.{{sfn|Schindler|1981|p=139-142}} The Augsburg Town Hall (1615-1620), designed by Lutheran architect Elias Holl, included two towers topped by onion domes and these became part of the city's civic identity by the later seventeenth century. Like the town hall, the Lutheran churches of Holy Cross and St. Ulrich have onion domes.{{sfn|Spicer|2016|p=60}} Polish examples of churches with domed transepts include a collegiate church in the city of Żółkiew (1606–1618), a Franciscan church in Święta Anna near Przyrów (1609–1617), the burial place of Ligęza in Rzeszów (1624–1627), the burial place of Opaliński in Sieraków (1624–1629), and the burial place of Sapieha in Kodeń (founded in 1631).{{sfn|Kurzej|2015|p=175–176}} In Poland, polygonal buildings and earlier medieval towers were often capped with domes in the Renaissance or Baroque styles. The Renaissance domes were generally onion domes stacked on top of one another and separated with so-called lanterns of openwork arcades. An example is the tower at the Basilica of the Holy Trinity in Chełmża. The Baroque domes were characterized by unusual shapes and curves, such as those of Gniezno Cathedral.{{sfn|Gubańska|2008|p=137}} However, many bulbous domes in the larger cities of eastern Europe were replaced during the second half of the eighteenth century in favor of hemispherical or stilted cupolas in the French or Italian styles.{{sfn|Born|1944|p=219–220}} Oval plan churches spread outside of Rome following Vignola's innovation with the church of Santa Anna dei Palafrenieri. Giovan Battista Aleotti built both Santa Maria della Celletta in Argenta and San Carlo Borromeo in Ferrara between 1609 and 1621. Giuseppe Nuvolo built the church of San Carlo all'Arena around 1626 in Naples, the first of several oval plan churches that would be built there until the middle of the eighteenth century.{{sfn|Duvernoy|2015|p=438-439}} In Spain, oval churches of the seventeenth century include the Convent of Las Bernardas in Alcalá de Henares, begun in 1617, the church of the Virgen de los Desamparados in Valencia around 1650, and the Oratory of San Filippo Neri in Cádiz at the end of the century.{{sfn|Duvernoy|2015|p=448-449}} Architect Pedro Sánchez built oval domes over his churches of Saint Hermenegildo in 1616 and San Antonio de los Alemanes in 1624.{{sfn|Escrig|Cobreros|Valcarcel|1997|pp=358}} In Milan, proposals for the dome of San Lorenzo (built in 1619) included versions both with and without timburios, although, along with the quincunx plan Church of Sant'Alessandro, the building had the more difficult supporting structure of four main arches between four free-standing pillars. A dome for Sant'Alessandro was built in 1626 and demolished in 1627, perhaps due to the use of an inadequate number of iron ties. Although the dome had a timburio, it may also have had a lower and less stable hemispherical form.{{sfn|Giustina|2003|p=1033-1038; 1041}} In Paris, the dome of St. Marie de la Visitation was built by François Mansart from 1632 to 1633, who would later design the church of Val-de-Grâce (1645–1710), built to commemorate the birth of Louis XIV. The dome of Val-de-Grâce, however, was designed by Jacques Lemercier after having worked in Rome for seven years. It includes an inscription around the dome relating to the Bourbon kings.{{sfn|Stephenson|Hammond|Davi|2005|p=183}} Inspired by St. Peter's Basilica, its dome likewise has two shells, but the outer shell is much taller in order to compensate for the foreshortening effect from viewing the exterior dome from nearby on the ground. The inner shell is made of stone and the outer shell is made of wood.{{sfn|Hanser|2006|p=167}} Developments in Baroque architecture in response to the Protestant Reformation placed greater emphasis on theatricality and the ceremonies at the altar and this expressed itself in new church designs, such as those of San Carlo alle Quattro Fontane (1638–41) by Borromini and Sant'Andrea al Quirinale (1658–61) by Bernini. Both use the oval or elliptical dome to cover plans that synthesize longitudinal and central plan church layouts, allowing clear views of the altar from all points.{{sfn|Bagliani|2009}}{{sfn|Stephenson|Hammond|Davi|2005|p=178-180}} Borromini's dome of San Carlo alle Quattro Fontane has a novel oval plan that approximates an ellipse using four circular arcs based on the vertices of two large equilateral triangles; a complex geometrical coffer pattern of crosses, octagons, and lozenges is repeated eight times on the dome's inner surface.{{sfn|Simona|2005|pp=49, 51}} Because the dome uses a pattern of coffers that get smaller as they approach the oculus and because it is lit from both above and below, the dome appears lighter and higher than it would otherwise. The church inaugurated the high baroque style in Rome.{{sfn|Stephenson|Hammond|Davi|2005|p=179}} A copy based on plans provided by Borromini was built as the church of Madonna del Prato in Gubbio.{{sfn|Duvernoy|2015|p=441}} Bernini's oval plan is unusual in that the entrance is on the minor axis and it is often depicted as unique in this respect, but the later churches of Santi Celso e Giuliano (1735) and Santissimo Nome di Maria (1736) also have this layout.{{sfn|Duvernoy|2015|p=446}} Bernini's Sant'Andrea al Quirinale is known as the oval Pantheon. Oval domes can also be found in secular buildings such as the Château de Maisons (1642–6), the Château de Vaux-le-Vicomte (1657), and the Amalienburg pavilion at Schloss Nymphenburg, Munich.{{sfn|Nuttgens|1997|p=209}} Borromini's masterpiece is the dome of Sant'Ivo alla Sapienza (1642–50), built for Pope Urban at a University in Rome. The ribbed dome has a unique and complex geometry with a large window in each of it six lobes and stucco ornamentation.{{sfn|Stephenson|Hammond|Davi|2005|p=179}} The style of using ribs in a dome over a coffered background was first expressed over the small chapel of Filippo Neri in the church of Santa Maria in Vallicella by Pietro da Cortona. The domes of Santi Luca e Martina and San Carlo al Corso, both about 14 meters wide, were also designed by Cortona.{{sfn|Fusco|Villanni|2003|p=583}} In Spain, false vaults made of wood or reed and covered with plaster were used in the seventeenth century. The technique, dating from the medieval period, was applied to chapel domes to give the appearance of stone construction.{{sfn|Cabezas|2011|p=274-275}} The dome of Seville's Santa Maria la Blanca (begun 1659) used stucco to create high-relief scrolling foliage patterns like those of Islamic arabesque ornament. In Granada, stuccowork was introduced by Francisco Hurtado Izquierdo and used to embellish classical forms in the dome (c. 1702) and sacristy dome (c. 1713–42) of La Cartuja, in contrast to earlier vaults such as that of San Jerónimo (1523–43), which used diagonal ribs in an idiosyncratic way and had apparent Moorish influences.{{sfn|Stephenson|Hammond|Davi|2005|p=185}} In Lima, the "City of Kings", capital of Spain's Viceroyalty of Peru, frequent earthquakes prompted the use of quincha construction for the vaulting of the church of San Francisco (1657-74) by Constantino de Vasconcelos and Manuel de Escobar. Quincha was an adaptation of an indigenous wattle and daub technique and consisted of a wooden structural framework filled out with cane or bamboo and covered with plaster and stucco to resemble stone. The anti-seismic properties of this light and elastic system allowed the 36.9 foot wide double-shell dome of the church, a hemisphere and lantern resting directly on pendentives, to survive for more than three hundred years and it became universally adopted along the Peruvian coast. Other examples include the dome of the church of Santo Domingo in Lima (1678-81), the dome of the church of San Francisco in Trujillo (rebuilt after 1759), and the dome of the camarín of the church of La Merced in Lima (1774).{{sfn|Camilloni|2003|pp=1741-1742, 1744-1747}} In the Parisian church of Sainte-Anne-la-Roy (1662) and the Church of San Lorenzo (1670–87) in Turin, Guarino Guarini, a Theatine monk and mathematician, used interlacing bands or ribs reminiscent of Islamic domes at Iznik or Cordoba, or the Christian example at Torres Del Río. The four years he spent in Paris may have influenced the emphasis on forced perspective and optical effects in his domes, in contrast to the more formalistic architectural design of Rome at that time. He used form, color, and light to give the illusion of greater height in his centralized domed churches. His dome over the Chapel of the Holy Shroud (1667–90) in Turin is supported by six stacked hexagonal layers of six arches each, arranged such that each layer of arches spring from the peaks of the arches in the layer below them. Although the layers form a cone leading to the base of the dome, each is made progressively smaller to exaggerate the appearance of height. The dome itself is a lighter color than the lower levels of the church, also making it appear even farther away.{{sfn|Robison|1991|p=384–387, 391}} The ribs in San Lorenzo and Il Sidone were shaped as catenary curves.{{sfn|Nuttgens|1997|p=210}} Work on the Cathedral of Santa Margherita in Montefiascone, halted at the level of the drum due to lack of funds, was resumed after a 1670 fire destroyed the temporary wooden roof and damaged the interior. The stone dome was built by Carlo Fontana with eight ribs connected to each other by horizontal arches to resist outward force. It was completed in 1673 and he defended its proportions in print by both citing the measured proportions of other domes as well as the existing geometrical rules of proportion based on materials and supports.{{sfn|Manzanares|2003|pp=1308-1309}} The idea of a large oculus in a solid dome revealing a second dome originated with Guarini.{{sfn|Wittkower|1999|p=48}} He established the oval dome as a reconciliation of the longitudinal plan church favored by the liturgy of the Counter-Reformation and the centralized plan favored by idealists.{{sfn|Earls|1971|p=128}} Guarini's drawings, including isometric intersections of spheres, barrel vaults, and oval domes as well as drawings explaining construction and ceiling patterns, were published posthumously in the Architettura Civile and influenced the designs of Hildebrandt, the Dientzenhofers, and Balthasar Neumann in Central Europe. With the newly developed mathematics of calculus, these experimental designs could be proven and would become the foundation of Rococo spatial arrangements.{{sfn|Earls|1971|p=127–29}} In the Polish–Lithuanian Commonwealth, Roman Catholic churches with Greek-cross plans and monumental domes designed by Tylman van Gameren became popular in the last quarter of the seventeenth century. Examples include St. Kazimierz Church (1689-95) and the Church of St. Anthony of Padua, Czerniaków (1690-92).{{sfn|Krasny|1999|p=88}} The traditional Orthodox church design in three parts, with a dome over each, was used in hundreds of Orthodox and Uniate wooden churches in the seventeenth and eighteenth centuries. Of the many Polish Roman Catholic wooden domes built in the seventeenth and eighteenth centuries, examples with domes include the Church of SS. Margaret and Judith in Kraków (1680-1690) and a church in Mnichów built between 1765 and 1770.{{sfn|Krasny|1999|p=92}} Tatar wooden mosques in Poland were domed central plan structures with adjacent minarets.{{sfn|Krasny|1999|p=94}} Adjacent to a hospital and retirement home for injured war veterans, the royal chapel of Les Invalides in Paris, France, was begun in 1679 and completed in 1708. The dome was one of many inspired by that of St. Peter's Basilica and it is an outstanding example of French Baroque architecture. In 1861 the body of Napoleon Bonaparte was moved from St. Helena to the most prominent location under the dome. London's Great Fire of 1666, following a devastating outbreak of plague in the city which killed a fifth of its population, spurred the commission of Christopher Wren to rebuild St. Paul's Cathedral, which occurred over the course of 35 years. Robert Hooke, who first articulated that a thin arch was comparable to an inverted hanging chain, may have advised Wren on how to achieve the crossing dome.{{sfn|Denny|2010|p=137-138}}{{sfn|Mark|Billington|1989|p=314}} Wren may also have been informed of the structural problems of the dome of St. Peter's Basilica by John Evelyn, who had examined it, and did not finalize his design for a dome three-quarters its size until shortly before its construction started in 1705.{{sfn|Mark|Billington|1989|p=312-313}} When finished, the dome had three layers: an inner dome with an oculus, a decorative outer wood dome covered in lead roofing, and a structural brick cone in between. The brick cone ends in a small dome that supports the cupola and outer roof and the decorated underside of which can be seen through the inner dome's oculus. The structure rises 365 feet (108 m) to the cross at its summit, but is evocative of the much smaller Tempietto by Bramante.{{sfn|Millers|2007|p=61}} The use of the brick cone, in addition to other innovations, allowed the piers beneath the dome to be reduced in size.{{sfn|Hanser|2006|p=167}} The thickness of the brick cone is 450 millimeters.{{sfn|Cowan|1983|p=189}} Wren's structural system became the standard for large domes well into the 19th century.{{sfn|Mark|Billington|1989|p=315}} The iron chains used to encircle the 34-meter-wide dome have since been replaced by stainless steel girdles.{{sfn|McNeil|2002|p=881–882}} Damage to the outer timber truss dome during World War II resulted in the timber being replaced by reinforced concrete.{{sfn|Cowan|1983|p=187-188}} A lightweight dome made with a wooden frame, woven reeds, and plastered with a gypsum mortar was built over Messina Cathedral in Sicily in 1682. Known to react better than masonry vaulting to earthquakes, this technique was also more expensive due to the need for specialized artisans and the use of white poplar wood in the structure, which unlike traditional wooden formwork could not be re-used and was rare on the island. It was used in eastern Sicily after earthquakes struck in 1693 and 1727.{{sfn|Nobile|Bares|2015|p=4-5, 7}} Eighteenth centuryCentral EuropeAlthough the Thirty Years' War delayed the onset of the Baroque style in the areas of the Holy Roman Empire, rebuilding of the many palaces and churches destroyed had begun by the end of the seventeenth century. Johann Bernhard Fischer von Erlach studied architecture in Rome before working in Austria. His Church of the Holy Trinity (begun 1694) in Salzburg has clear influences from Borromini in its use of the color white, accentuated windows, and the elliptical dome and oculus. The oval dome of St. Peter's Church in Vienna (1702–33) is almost exactly the same, although it was designed by Johann Lukas von Hildebrandt. The dome of von Erlach's Karlskirche (1716–24) is also very similar, but with round windows in the dome itself in addition to the windows of the drum and with dark trim at both the base of the drum and the base of the dome.{{sfn|Stephenson|Hammond|Davi|2005|p=182, 185-87}} Guarini's plan for the church of S. Maria Ettinga in Prague inspired a group of buildings built in Bohemia between 1698 and 1710.{{sfn|Bagliani|2009}} An abbey church at Obořiště, Bohemia, with two transverse oval vaults in the nave intersecting a third circular dome made to look like an oval, was the first church by Christoph Dientzenhofer to show Guarini's influence. His vaulting system of two transverse oval vaults that do not overlap at the Church of Svatá Klará in Cheb was elaborated two years later in the great abbey church at Banz (1710–1718). Banz, overseen by Johann Dientzenhofer, has a complex arrangement of overlapping and subdivided transverse oval vaults with wide ribs at their intersections that make it difficult to understand the structural system, like Guarini's earlier church of Santa Maria della Divina Providenza in Lisbon.{{sfn|Earls|1971|p=130–31}} Domes by the Asam brothers, such as those of Weingarten Abbey (1715–20) and Weltenburg Abbey (1716-21), blended fresco painting, stucco and, in the case of Weltenburg, indirect lighting to achieve their effects. Another set of brothers, Johann Baptist Zimmermann and Dominikus Zimmermann of Bavaria, emphasized white stuccowork under direct lighting blended with fresco painting at St. Peter and Paul Church at Steinhausen (1728–31) and Wieskirche at Weis (1745–54). In Bohemia and Moravia, Jan Santini Aichel blended styles in what has become known as baroque Gothic, as can be seen in his crossing dome at the Benedictine Monastery at Kladruby (1712–26) and the five-lobed dome of the Chapel of St. Jan Nepomuk (1719–22). More conventionally baroque is his dome at St. Peter and Paul Benedictine Monastery in Rajhrad (1722–24).{{sfn|Stephenson|Hammond|Davi|2005|p=187-89}} Appointed by the King of Savoy as First Architect to the King in 1714, Filippo Juvarra built the Basilica of Superga at Turin between 1717 and 1731. The apparent lightness of its dome may be attributed to both even lighting and the unusual lack of pendentives, with the dome on its circular entablature above eight columns instead.{{sfn|Stephenson|Hammond|Davi|2005|p=181}} Its use of bulbous domes on the lantern and side towers was also unusual in Italy, where bulbous domes remained rare.{{sfn|Born|1944|p=220}} The basilica was built as the official dynastic mausoleum of the House of Savoy, which had governed Piedmont and southeast France since the 15th century. The original intended site of the mausoleum, begun in 1596, was found to have problems with uneven settlement due to the soil and this led to a halt in construction. After efforts to compensate for the settlement, and despite the mausoleum at Superga already being built, construction was resumed to complete the original building as the Sanctuary of Vicoforte.{{sfn|Aoki|Chiorino|Roccati|2003|p=203-204, 206}} The Sanctuary of Vicoforte's oval dome, very close to an ellipse, was completed in 1731 and is the largest masonry dome of its kind in the world. It measures 37.15 meters by 24.8 meters at its base and is pierced by eight oval windows and a central oval oculus with a cupola. Although iron rings were used as part of the original construction at three levels to hold the dome together, cracks developed as the foundation settled further over the centuries. Additional reinforcement was added from 1985 to 1987 to halt their spread.{{sfn|Aoki|Chiorino|Roccati|2003|p=203, 206, 207}} Oval domes are also found in nearby Liguria, such as the church of San Torpete (1730–33) in Genoa, but the use of stone in this region, rather than the brick predominant in the architecture of Piedmont, limited their size. The style of Piedmont spread to Vienna, where Italian architects built oval-plan churches and inspired the building of others.{{sfn|Bagliani|2009}} Many decades after Guarino Guarini's buildings used them, the crossed-arch dome was revived by Bernardo Vittone in projects such as the Cappella della Visitazione (1738–39) and the Chapel of San Luigi Gonzaga.{{sfn|Robison|1991|p=401}}{{sfn|Fuentes|Huerta|2010|p=347}}{{sfn|Stephenson|Hammond|Davi|2005|p=181}} German Baroque architecture resolved the tension between longitudinal and centralized spaces through the use of ovals. Examples include the domes of Johann Michael Fischer's rotunda at Murnau (1725–27), Balthasar Neumann's Hofkirche at Würzburg Residence (1733) and Hofkapelle at Werneck (1733), and Dominikus Zimmermann's church at Steinhausen (1727–33).{{sfn|Earls|1971|p=132}} Neumann's more traditional longitudinal churches had domes over their crossings, such as his churches at Münsterschwarzach Abbey (1727–43), Gössweinstein (1730–39), Etwashausen (1733–45), Gaibach (1742-45), and Neresheim Abbey (1745–92).{{sfn|Earls|1971|p=133-35}} Neumann replaced barrel vaults in basilical plan churches with series of light intersecting elliptical domes.{{sfn|Escrig|Cobreros|Valcarcel|1997|p=362}} Considered Neumann's masterpiece, his Basilica of the Fourteen Holy Helpers (1743–72), uses a system of intersecting ovals similar to that at Banz Abbey. Unlike Banz, the bands at the intersection of the vaults are modeled in stucco, rather than being structural. The stone and mortar shells of the domed vaulting are reinforced by iron bars, a technique he also used in the 18 meter span domed vault covering the staircase at the Würzburg Residence.{{sfn|Earls|1971|p=131, 135-37}} It was built in a rural area of Bavaria as a pilgrimage church, as was the Wieskirche, and both in the rococo style.{{sfn|Yonan|2009|p=288}} Because of the imprecision of oval domes in the Rococo period, resting them on drums created problems and the domes instead often rested directly on arches or pendentives.{{sfn|Earls|1971|p=135-36}} The oval dome of the Trinity church in Bratislava was built between 1717 and 1745. It is very similar to that of St. Peter's Church in Vienna, which the architect, Antonio Galli Bibiena, had briefly worked on, but is decorated instead by painting in the trompe-l'œil technique for which the Bibiena family is known. The dome of Santa Maria Assumpta (c. 1770) in Sabbioneta, also designed by Bibiena, employs a more complex trompe-l'œil effect. A double dome, the inner dome is an open latticework through which the outer dome can be seen, which is painted to appear to be a clear sky.{{sfn|Stephenson|Hammond|Davi|2005|p=182-183}} Empress Maria Theresa commissioned the Gardekirche as part of a relocated crown-sponsored hospital in Vienna and it was built between 1755 and 1763. Its oval dome was decorated in the rococo style popular among the city's elites and it would serve as a model for the church built in the Nadelburg, which was founded by the Habsburgs. {{sfn|Yonan|2009|p=288}} The oval dome of the Church of Santa Chiara in Noto, Sicily, was built by Rosario Gagliardi and completed in 1753. It is a false dome 20.5 meters long and 13.2 meters wide and made of a series of parallel wooden arches hidden with planks and stucco on the inside surface. Unlike similar work elsewhere in Italy, it is self-supporting and unconnected to the earlier truss roof above it. The oval domes of the church of the Addolorata at Niscemi was based on designs by Gagliardi and the 1755 vault over the church of San Giuseppe in Syracuse by Carmelo Bonaiuto is also related. The dome over the crossing of four ribs springing from the centers of it supporting arches and is also a self-supporting false vault made of wood covered in plaster.{{sfn|Nobile|Bares|2015|p=7, 10, 14}} In Quito, Ecuador, La Iglesia de la Compañía de Jesús was built about 100 km away from an active fault line. The dome was built with adobe-concrete and tiles. Although the cruciform arrangement of the church allows it to withstand some horizontal force, the materials used were chosen for their resistance to compression only and the earthquakes it has experienced have required many repairs.{{sfn|Turek|Ventura|Placencia|2002|pp=1259-1260}} Western EuropePlans for the Church of St. Genevieve, the patron saint of Paris, were approved in 1757 with a dome 275 feet tall over a Greek cross plan. The architect of the church, Jacques-Germain Soufflot, wanted to surpass the dome of London's St. Paul's Cathedral and, like St. Paul's, the dome consisted of three shells. Unlike St. Paul's, and due to advances in mathematics and engineering, all three shells were built of stone and made a part of a structural system that permitted support by thinner piers and walls.{{sfn|Hanser|2006|p=167-68}} Although never very popular in domestic settings, domes were used in a number of 18th century homes built in the Neo-Classical style, including the 1720s Chiswick House, in West London, and Thomas Jefferson's Monticello, begun in the 1770s.{{sfn|Palmer|2009|p=92-93}} Monticello's dome was the first to be built on an American home.{{sfn|Giordano|2012|p=169}} United StatesIn the United States, most public buildings in the late 18th century were only distinguishable from private residences because they featured cupolas, such as that of the Maryland State House or the smaller, and more typical, example over the Old State House of Delaware.{{sfn|Allen|2001|p=13}} The wooden dome over the Maryland State House in Annapolis was the first dome on a capitol building in the United States, added between 1785 and 1787. The Massachusetts State House, built in the next decade, included a dome after it was decided that the national capitol building would have one.{{sfn|Seale|Oxendorf|1994|p=14}} Several states added prominent domes to their assembly buildings as a result of the choice for the national capitol, and completed them before the national capitol dome was finished.{{sfn|Wallis|2010|p=4}} The design for the national capitol building approved by George Washington included a dome modeled on the Pantheon, with a low exterior elevation. Subsequent design revisions resulted in a double dome, with a raised external profile on an octagonal drum, and construction did not begin until 1822. The interior dome was built of stone and brick except for the upper third, which was made of wood. The exterior dome was wooden and covered with copper sheeting.{{sfn|Allen|2001|p=146}} ReferencesBibliography{{refbegin|2}}
| last = Allen | first = William C. | url = http://www.gpo.gov/fdsys/pkg/GPO-CDOC-106sdoc29?null | title = Senate Document 106-29: History of the United States Capitol: A Chronicle of Design, Construction, and Politics | accessdate = | publisher = U.S. Government Printing Office | year = 2001 | ref = {{sfnRef|Allen|2001}}
| last = Aoki | first = Takayoshi | last2 = Chiorino | first2 = Mario Alberto | last3 = Roccati | first3 = Roberto | editor-last = Huerta | editor-first = S. | date = January 2003 | title = Structural Characteristics of the Elliptical Masonry Dome of the Sanctuary of Vicoforte | journal = Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003 | volume = | number = | publisher = I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados | location = Madrid | url = http://gilbert.aq.upm.es/sedhc/biblioteca_digital/Congresos/CIHC1/CIHC1_021.pdf | accessdate = | pages = 203–212 | ref = {{sfnRef|Aoki|Chiorino|Roccati|2003}}
| last = Bagliani | first = Stefano | date = May 2009 | title = The Architecture and Mechanics of Elliptical Domes | journal = Proceedings of the Third International Congress on Construction History, Cottbus | volume = | number = | location = | url = http://www.bma.arch.unige.it/PDF/CONSTRUCTION_HISTORY_2009/VOL1/Bagliani-Stefano_layouted.pdf | accessdate = | pages = | ref = {{sfnRef|Bagliani|2009}}
| last = Bažant | first = Jan | translator-last = Sherman | translator-first = Tamah | title = The Prague Belvedere (1537 - 1563) | year = 2008 | edition = English; Second, revised | publisher = Festina Lente Press CZ | location = Prague | isbn = 978-80-200-1411-5 | url = https://www.researchgate.net/publication/292069909 | ref = {{sfnRef|Bažant|2008}}
| last = Betts | first = Richard J. | date = March 1993 | title = Structural Innovation and Structural Design in Renaissance Architecture | journal = Journal of the Society of Architectural Historians | volume = 52 | number = 1 | location = | jstor = 990755 | pages = 5–25 | ref = {{sfnRef|Betts|1993}} | doi=10.2307/990755
| last = Born | first = Wolfgang | date = April 1944 | title = The Introduction of the Bulbous Dome into Gothic Architecture and its Subsequent Development | journal = Speculum | volume = 19 | number = 2 | jstor = 2849071 | pages = 208–221 | ref = {{sfnRef|Born|1944}} | doi=10.2307/2849071
| last = Cabezas | first = Lino | title = Ornamentation and Structure in the Representation of Renaissance Architecture in Spain | journal = Nexus Network Journal | year = 2011 | volume = 13 | number = 2 | url = https://link.springer.com/content/pdf/10.1007/s00004-011-0067-3.pdf | accessdate = January 5, 2019 | pages = 257–279 | doi = 10.1007/s00004-011-0067-3 | ref = {{sfnRef|Cabezas|2011}}
| last = Camilloni | first = Humberto Rodríguez | editor-last = Huerta | editor-first = S. | date = January 2003 | title = Quincha architecture: The development of an antiseismic structural system in seventeenth century Lima | journal = Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003 | volume = | number = | publisher = I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados | location = Madrid | url = http://www.sedhc.es/biblioteca/actas/CIHC1_163_Rodriguez%20H.pdf | accessdate = March 24, 2019 | pages = 1741–1752 | ref = {{sfnRef|Camilloni|2003}}
| last = Cavalagli | first = Nicola | last2 = Gusella | first2 = Vittorio | date = November 2014 | title = Structural Investigation of 18th-Century Ogival Masonry Domes: From Carlo Fontana to Bernardo Vittone | journal = International Journal of Architectural Heritage | volume = 9 | number = 3 | pages = 265–276 | url = https://www.researchgate.net/publication/271937583 | ref = {{sfnRef|Cavalagli|Gusella|2014}} | doi=10.1080/15583058.2013.771294
| last = Cobreros Vime | first = Miguel Angel | last2 = Vázquez-Vicente | first2 = Enrique | date = January 1999 | title = The sail-vault: a survey of constructive techniques to stabilize a sophisticated structure | journal = WIT Transactions on the Built Environment | volume = 39 | number = | doi = 10.2495/STR990581 | url = https://www.researchgate.net/publication/303632555 | accessdate = March 31, 2019 | pages = | ref = {{sfnRef|Cobreros Vime|Vázquez-Vicente|1999}}
| last = Cowan | first = Henry J. | year = 1983 | title = Domes: Ancient and Modern | journal = Journal of the Royal Society of Arts | volume = 131 | number = 5320 | publisher = Royal Society for the Encouragement of Arts, Manufactures and Commerce | location = | jstor = 41373544 | pages = 181–198 | ref = {{sfnRef|Cowan|1983}}
| last = Denny | first = Mark | year = 2010 | title = Super Structures: The Science of Bridges, Buildings, Dams, and Other Feats of Engineering | pages = | publisher = Johns Hopkins University Press | location = Baltimore, Maryland | edition = | url = https://books.google.com/books?id=0yEybxQ-e0sC | isbn = 978-0-8018-9436-7 | ref = {{sfnRef|Denny|2010}}
| last = Duvernoy | first = Sylvie | year = 2015 | title = Baroque Oval Churches: Innovative Geometrical Patterns in Early Modern Sacred Architecture | journal = Nexus Network Journal | volume = 17 | issue = 2 | url = https://s3.amazonaws.com/academia.edu.documents/38944827/Oval_churches.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1547405436&Signature=B4mu76IMYfWgCUrr1%2F4br0n8uOU%3D&response-content-disposition=inline%3B%20filename%3DBaroque_Oval_Churches_Innovative_Geometr.pdf | accessdate = January 13, 2019 | pages = 425–456 | doi = 10.1007/s00004-015-0252-x | ref = {{sfnRef|Duvernoy|2015}}
| last = Earls | first = Michael W. | editor-last = Malo | editor-first = Paul | contribution = The Development of Structural Form in Franconian Rococo | year = 1971 | title = Essays to D. Kenneth Sargent | pages = 127–139 | publisher = The School of Architecture, Syracuse University | location = Syracuse, New York | edition = | url = http://surface.syr.edu/cgi/viewcontent.cgi?article=1124&context=arc | isbn = | ref = {{sfnRef|Earls|1971}}
| last1=Escrig | first1=F. | last2=Cobreros | first2=A. | last3=Valcarcel | first3=J.P. | title=The Elliptical Dome. A survey of constructive techniques to stabilize a sopisticated structure | year=1997 | journal=Transactions on the Built Environment | volume=26 | pages=355–364 | publisher=WIT Press | url=https://www.witpress.com/Secure/elibrary/papers/STR97/STR97034FU.pdf | isbn= | ref={{sfnRef|Escrig|Cobreros|Valcarcel|1997}}
| last = Fernández | first = Santiago Huerta | last2 = Hernández-Ros | first2 = Ricardo Aroca | title = Masonry Domes: A Study on Proportion and Similarity | year = 1989 | journal = 10 Years of Progress on Shell and Spatial Structures: 11–15 September 1989 | volume = 1 | number = | publisher = Cedex-Laboratorio Central de Estructuras y Materiales | location = Madrid | url = http://oa.upm.es/1278/1/PONEN_Huerta_1989_01.pdf | accessdate = April 18, 2014 | pages = | ref = {{sfnRef|Fernández|Hernández-Ros|1989}}
| last = Fusco | first = Annarosa Cerutti | last2 = Villanni | first2 = Marcello | editor-last = Huerta | editor-first = S. | contribution = Pietro da Cortona's Domes between New Experimentations and Construction Knowledge | year = 2003 | title = Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003 | pages = 579–591 | publisher = I. Juan de Herrera | location = Madrid | edition = | url = http://www.sedhc.es/biblioteca/actas/CIHC1_057_Cerutti%20A.pdf | isbn = 978-84-9728-070-9 | ref = {{sfnRef|Fusco|Villanni|2003}}
| last = Giordano | first = Ralph G. | year = 2012 | title = The Architectural Ideology of Thomas Jefferson | pages = | publisher = McFarland & Company, Inc. | location = | edition = | url = https://books.google.com/books?id=ZdAxOsdROOQC | isbn = 978-0-7864-9091-2 | ref = {{sfnRef|Giordano|2012}}
| last = Giustina | first = Irene | contribution = On the art and the culture of domes. Construction in Milan and Lombardy in the late sixteenth and in the first half of the seventeenth century | year = 2003 | title = Proceedings of the First International Congress on Construction History | publisher = Sociedad Española de Historia de la Construcción | location = Madrid, Spain | contribution-url = http://www.sedhc.es/biblioteca/actas/CIHC1_101_Giustina%20I.pdf | pages = 1033–1042 | ref = {{sfnRef|Giustina|2003}}
| last = Gubańska | first = Renata | contribution = Importance of Towers in Landscape of Polish Towns | date = June 11–13, 2008 | title = 1st WSEAS International Conference on LANDSCAPE ARCHITECTURE (LA '08) | location = Algarve, Portugal | contribution-url = http://www.wseas.us/e-library/conferences/2008/algarve/LA/19-588-191.pdf | pages = 135–139 | isbn = 978-960-6766-72-5 | ref = {{sfnRef|Gubańska|2008}}
| last = Hanser | first = David A. | year = 2006 | title = Architecture of France | pages = | publisher = Greenwood Press | location = | edition = | url = https://books.google.com/books?id=zojzUU976h0C | isbn = 978-0-313-31902-0 | ref = {{sfnRef|Hanser|2006}}
| last=Krasny | first=Piotr | year=1999 | contribution=Architecture in Poland 1572-1764 | editor-last=Ostrowski | editor-first=Jan K. | title=Land of the Winged Horsemen: Art in Poland 1572-1764 | pages=81–97 | publisher=Art Services International | location=New Haven, London | url=http://archiv.ub.uni-heidelberg.de/artdok/volltexte/2014/2768 | doi=10.11588/artdok.00002768 | ref={{sfnRef|Krasny|1999}}
| last = Kurzej | first = Michał | year = 2015 | contribution = The Collegiate Church in Zamość in the Context of European Architecture | editor-last = Skowrońska | editor-first = Renata | editor-last2 = Flachenecker | editor-first2 = Helmut | title = Leben zwischen und mit den Kulturen. Studien zu Recht, Bildung und Herrschaft in Mitteleuropa | pages = 169–186 | publisher = Polska Misja Historyczna przy Uniwersytecie Juliusza Maksymiliana | location = Toruń/Würzburg | volume = 2 | url = https://www.academia.edu/19908363 | isbn = 978-8-323-13491-6 | ref = {{sfnRef|Kurzej|2015}}
| last = López-Mozo | first = Ana | contribution = Extradosed vaults in the Monastery of El Escorial: The domes at the church towers | date = January 2003 | title = Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003 | publisher = Sociedad Española de Historia de la Construcción | location = Madrid, Spain | contribution-url = http://www.sedhc.es/biblioteca/actas/CIHC1_125_L__pez%20A.pdf | pages = 1321–1326 | ref = {{sfnRef|López-Mozo|2003}}
| last = López-Mozo | first = Ana | title = La huella de El Escorial en las cúpulas españolas de finales del siglo XVI. El caso de la Capilla Cerralbo de Ciudad Rodrigo | trans-title = The influence of the Escorial on Spanish domes at the end of the 16th century. The case of Cerralbo Chapel in Ciudad Rodrigo | date = October 2013 | journal = Informes de la Construcción | volume = 65 | number = EXTRA-2 | location = | url = http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/download/2926/3232 | pages = 95–109 | doi = 10.3989/ic.13.015 | ref = {{sfnRef|López-Mozo|2013}}
| last = Manzanares | first = Gema López | contribution = The XVIIth century: Carlo Fontana's expertises | date = January 2003 | title = Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003 | publisher = Sociedad Española de Historia de la Construcción | location = Madrid, Spain | contribution-url = http://www.sedhc.es/biblioteca/actas/CIHC1_124_L__pez%20G.pdf | pages = 1307–1320 | ref = {{sfnRef|Manzanares|2003}}
| last = Mark | first = Robert | last2 = Billington | first2 = David P. | title = Structural Imperative and the Origin of New Form | year = 1989 | journal = Technology and Culture | volume = 30 | number = 2 | jstor = 3105106 | pages = 300–329 | ref = {{sfnRef|Mark|Billington|1989}} | doi=10.2307/3105106
| editor-last = McNeil | editor-first = Ian | contribution = | year = 2002 | title = An Encyclopaedia of the History of Technology | publisher = Routledge | location = | edition = | url = https://books.google.com/books?id=o7yJAgAAQBAJ | isbn = 978-1-134-98165-6 | ref = {{sfnRef|McNeil|2002}}
| last = Melaragno | first = Michele G. | year = 1991 | title = An Introduction to Shell Structures: the Art and Science of Vaulting | pages = | publisher = Van Nostrand Reinhold | location = New York, New York | edition = softcover | url = https://books.google.com/books?id=IzToBwAAQBAJ | isbn = 978-1-4757-0225-5 | ref = {{sfnRef|Melaragno|1991}}
| last = Millers | first = Keith | year = 2007 | title = St. Peter's | pages = | publisher = Harvard University Press | location = | edition = | url = https://books.google.com/?id=8wsuvj2km_gC&pg=PA61&lpg=PA61&dq=st+paul%27s+cathedral+bramante#v=onepage&q=st%20paul%27s%20cathedral%20bramante&f=false | isbn = 978-0-674-02689-6 | ref = {{sfnRef|Millers|2007}}
| last = Nuttgens | first = Patrick | year = 1997 | title = The Story of Architecture | publisher = Phaidon Press Limited | location = Hong Kong | url = | isbn = 978-0-7148-3616-4 | ref = {{sfnRef|Nuttgens|1997}}
| last = Nobile | first = Marco Rosario | last2 = Bares | first2 = Maria Mercedes | title = The use of 'false vaults' in 18th century buildings of Sicily | journal = Construction History | volume = 30 | number = 1 | year = 2015 | publisher = The Construction History Society | location = | doi = | jstor = 44215897 | pages = 53–70 | ref = {{sfnRef|Nobile|Bares|2015}}
| last = Palmer | first = Allison Lee | year = 2009 | title = The A to Z of Architecture | pages = | publisher = Scarecrow Press | location = | edition = | url = https://books.google.com/books?id=7rKbblKGVEsC | isbn = 978-0-810-87058-1 | ref = {{sfnRef|Palmer|2009}}
| last = Peña | first = Fernando | last2 = Manzano | first2 = Julio | year = 2015 | chapter = Dynamical Characterization of Typical Mexican Colonial Churches | title = Seismic Assessment, Behavior and Retrofit of Heritage Buildings and Monuments | editor-last1 = Psycharis | editor-first1 = I. | editor-last2 = Pantazopoulou | editor-first2 = S. | editor-last3 = Papadrakakis | editor-first3 = M. | series = Computational Methods in Applied Sciences | volume = 37 | pages = 297–319 | publisher = Springer, Cham | location = | chapter-url = https://www.researchgate.net/publication/277020521 | isbn = 978-3-319-16130-3 | doi = 10.1007/978-3-319-16130-3_12 | ref = {{sfnRef|Peña|Manzano|2015}}
| last = Peña | first = Fernando | last2 = Chávez | first2 = Marcos M. | year = 2016 | title = Seismic Behavior of Mexican Colonial Churches | journal = International Journal of Architectural Heritage | volume = 10 | number = 2–3 | pages = 332–345 | doi = 10.1080/15583058.2015.1113341 | url = https://www.researchgate.net/publication/287125813 | ref = {{sfnRef|Peña|Chávez|2016}}
| last = Robison | first = Elwin C. | date = December 1991 | title = Optics and Mathematics in the Domed Churches of Guarino Guarini | journal = Journal of the Society of Architectural Historians | volume = 50 | number = 4 | pages = 384–401 | ref = {{sfnRef|Robison|1991}} | doi=10.2307/990663 | jstor = 990663
| last = Schindler | first = Hans | date = May 1981 | title = Concerning the Origin of the Onion Dome and Onion Spires in Central European Architecture | journal = Journal of the Society of Architectural Historians | volume = 40 | number = 2 | jstor = 989727 | pages = 138–142 | ref = {{sfnRef|Schindler|1981}} | doi= 10.2307/989727
| last = Seale | first = William | last2 = Oxendorf | first2 = Eric | year = 1994 | title = Domes of America | pages = | publisher = Pomegranate Artbooks | location = | edition = illustrated | url = https://books.google.com/?id=YPQ2AQAAIAAJ | isbn = | ref = {{sfnRef|Seale|Oxendorf|1994}}
| last = Simona | first = Michea | year = 2005 | contribution = Ovals in Borromini’s Geometry | editor-last = Emmer | editor-first = Michele | title = Mathematics and Culture II. Visual Perfection: Mathematics and Creativity | pages = 45-52 | publisher = Springer-Verlag Berlin Heidelberg | location = Germany | edition = | url = https://s3.amazonaws.com/academia.edu.documents/46800793/From_Tiling_the_Plane_to_Paving_Town_Squ20160626-20832-1nqjayj.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1554600642&Signature=0wYGwe0UKsFfAi7B%2FwehdJ0NmSA%3D&response-content-disposition=inline%3B%20filename%3DFrom_Tiling_the_Plane_to_Paving_Town_Squ.pdf#page=50 | isbn = 3-540-21368-6 | ref = {{sfnRef|Simona|2005}}
| last=Spicer | first=Andrew | title=Lutheran Churches in Early Modern Europe | publisher=Routledge | year=2016 | url=https://books.google.com/books?id=Di6oDQAAQBAJ | isbn=978-1-351-92116-9 | ref={{sfnRef|Spicer|2016}}
| last = Stephenson | first = Davis | last2 = Hammond | first2 = Victoria | last3 = Davi | first3 = Keith F. | year = 2005 | title = Visions of Heaven: the Dome in European Architecture | pages = | publisher = Princeton Architectural Press | location = | edition = illustrated | url = | isbn = 978-1-56898-549-7 | ref = {{sfnRef|Stephenson|Hammond|Davi|2005}}
| last = Tempesta | first = Giacomo | last2 = Paradiso | first2 = Michele | last3 = Galassi | first3 = Stefano | last4 = Pieroni | first4 = Eva | title = Maurice Lévy's original contribution to the analysis of masonry domes | year = 2015 | journal = Domes and Cupolas | volume = 2 | number = 2 | publisher = Angelo Pontecorboli Editore | location = Florence, Italy | url = https://flore.unifi.it/retrieve/handle/2158/1039031/130837/Maurice%20L%C3%A9vy%E2%80%99s%20original%20contribution%20to%20the%20analysis%20of%20masonry%20domes.pdf | accessdate = December 21, 2017 | pages = 85–91 | ref = {{sfnRef|Tempesta|Paradiso|Galassi|Pieroni|2015}}
| last = Turek | first = Martin | last2 = Ventura | first2 = Carlos | last3 = Placencia | first3 = Patricio | title = Dynamic Characteristics of a 17th Century Church in Quito, Ecuador | date = January 2002 | journal = Proceedings of the International Society of Optical Engineering | volume = | number = | location = | url = https://www.researchgate.net/publication/267563631 | accessdate = December 31, 2018 | pages = 1259–1264 | ref = {{sfnRef|Turek|Ventura|Placencia|2002}}
| last = Wallis | first = Kendall | year = 2010 | contribution = Bearing Bandmann's Meaning: A Translator's Introduction by Kendall Willis | editor-last = Bandmann | editor-first = Günter | translator = Kendall Wallis | title = Early Medieval Architecture as Bearer of Meaning | pages = | publisher = Columbia University Press | location = | edition = | url = https://books.google.com/books?id=mUzMRLjJEe0C | isbn = 978-0-231-50172-9 | ref = {{sfnRef|Wallis|2010}}
| last = Wittkower | first = Rudolf | chapter = S. Maria della Salute: Scenographic Architecture and the Venetian Baroque | year = 1963 | pages = 165–192 | editor-last = Kleinbauer | editor-first = W. Eugène | title = Modern Perspectives in Western Art History: An Anthology of Twentieth-Century Writings on the Visual Arts (Medieval Academy Reprints for Teaching) | volume = 25 | chapter-url = https://books.google.com/books?id=LTKSh3gXYFAC&dq=modern+perspectives+in+western+art+history&source=gbs_navlinks_s | publisher = University of Toronto Press | publication-date = 1989 | isbn = 978-0-8020-6708-1 | ref = {{sfnRef|Wittkower|1963}}
| last = Yonan | first = Michael | title = Ornament’s Invitation: The Rococo of Vienna’s Gardekirche | date = Winter 2009 | journal = The Eighteenth Century | volume = 50 | number = 4 | location = | url = https://s3.amazonaws.com/academia.edu.documents/34935596/Yonan_Gardekirche_Final.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1554064751&Signature=Drf9Zn5%2BSOyz2l%2B60keCWsfJfU8%3D&response-content-disposition=inline%3B%20filename%3DOrnament_s_Invitation_The_Rococo_of_Vien.pdf | doi = 10.1353/ecy.0.0043 | accessdate = March 31, 2019 | pages = 285-308 | ref = {{sfnRef|Yonan|2009}}{{Refend}}the church at the Jesuit college in Noto 8 : Domes|Arches and vaults|Architectural elements|Church architecture|Mosque architecture|Baroque architectural features|Ceilings|Roofs |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。