请输入您要查询的百科知识:

 

词条 Honda–Tate theorem
释义

  1. References

In mathematics, the Honda–Tate theorem classifies abelian varieties over finite fields up to isogeny. It states that the isogeny classes of simple abelian varieties over a finite field of order q correspond to algebraic integers all of whose conjugates (given by eigenvalues of the Frobenius endomorphism on the first cohomology group or Tate module) have absolute value {{radic|q}}.

{{harvs|txt|last=Tate|authorlink=John Tate|year=1966}} showed that the map taking an isogeny class to the eigenvalues of the Frobenius is injective, and {{harvs|txt|authorlink= Taira Honda|first=Taira|last=Honda|year=1968}} showed that this map is surjective, and therefore a bijection.

References

  • {{Citation | last1=Honda | first1=Taira | title=Isogeny classes of abelian varieties over finite fields | url=http://projecteuclid.org/euclid.jmsj/1260463295 | doi=10.2969/jmsj/02010083 | mr=0229642 | year=1968 | journal=Journal of the Mathematical Society of Japan | issn=0025-5645 | volume=20 | pages=83–95}}
  • {{Citation | last1=Tate | first1=John | author1-link=John Tate | title=Endomorphisms of abelian varieties over finite fields | doi=10.1007/BF01404549 | mr=0206004 | year=1966 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=2 | pages=134–144}}
  • {{Citation | last1=Tate | first1=John | author1-link=John Tate | title=Séminaire Bourbaki vol. 1968/69 Exposés 347-363 | publisher=Springer Berlin / Heidelberg | series=Lecture Notes in Mathematics | doi=10.1007/BFb0058807 | year=1971 | volume=179 | chapter=Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) | chapterurl=http://www.numdam.org/item?id=SB_1968-1969__11__95_0 | pages=95–110}}
{{DEFAULTSORT:Honda-Tate theorem}}{{abstract-algebra-stub}}

1 : Theorems in algebraic geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 19:01:06