请输入您要查询的百科知识:

 

词条 Rolls-Royce Trent
释义

  1. Design and development

      Origin   Design 

  2. Variants

     Trent 600 – First proposal  Trent 700  Trent 800   Trent 8104/8115   Trent 500  Trent 900  Trent 600 – Second proposal  Trent 1000   Trent 1500   Trent XWB  Trent 7000  Non-aircraft variants   MT30   Industrial Trent 60 Gas Turbine 

  3. Future developments

      Advanced Low-Pressure System (ALPS)    Advance    Advanced low-emission combustion system (ALECSys)    UltraFan  

  4. Applications

  5. Specifications

  6. See also

  7. Footnotes

     Notes  References 

  8. External links

{{short description|Family of turbofan aircraft engines}}{{About||the 1944 turboprop engine|Rolls-Royce RB.50 Trent|the 1960s low bypass turbofan|Rolls-Royce RB.203 Trent}}{{Use dmy dates|date=August 2017}}{{Use British English|date=August 2017}}
name=Trentimage= File:Test_Facility.jpgcaption=A Trent turbofan engine installed on a test bench at the Rolls-Royce Test Facility in Derby, UK.

}}{{Infobox aircraft engine

type=Turbofanmanufacturer=Rolls-Roycenational origin=United Kingdomfirst run=August 1990major applications= Airbus A330
Airbus A340-500
Airbus A340-600
Airbus A350
Airbus A380
Boeing 777
Boeing 787
number built =program cost =unit cost =developed from = Rolls-Royce RB211developed into = Rolls-Royce MT30variants with their own articles = Rolls-Royce Trent 500
Rolls-Royce Trent 700
Rolls-Royce Trent 800
Rolls-Royce Trent 900
Rolls-Royce Trent 1000
Rolls-Royce Trent XWB
Rolls-Royce Trent 7000
}}

Rolls-Royce Trent is a British family of three spool, high bypass turbofan aircraft engines manufactured by Rolls-Royce plc. All are developments of the RB211 with thrust ratings of {{convert|53000|to|97000|lbf|kN|lk=on}}. Versions of the Trent are in service on the Airbus A330, A340, A350, A380, Boeing 777, and 787. The Trent has also been adapted for marine and industrial applications.

First run in August 1990 as the model Trent 700, the Trent has achieved significant commercial success, having been selected as the launch engine for all three of the 787 variants (Trent 1000), the A380 (Trent 900) and the A350 (Trent XWB). Its overall share of the markets in which it competes is around 40%.[1] Sales of the Trent family of engines have made Rolls-Royce the second biggest supplier of large civil turbofans after General Electric,[2] relegating rival Pratt & Whitney to third position.

In keeping with Rolls-Royce's (sometimes neglected) tradition of naming its jet engines after rivers,[3] this engine is named after the River Trent in the Midlands of England. Singapore Airlines is currently the largest operator of Trents, with five variants in service or on order.{{ref|2|note 2}}

Design and development

Origin

When Rolls-Royce was privatised in April 1987, its share of the large civil turbofan market was only 8%.[4] Despite increasing sales success with the RB211, General Electric and Pratt & Whitney still dominated the market. At that time, the aircraft manufacturers were proposing new planes that would require unprecedented levels of thrust. Furthermore, the Boeing 777 and Airbus A330 were to be twin-engined, and their airline customers were demanding that they be capable of operating in the Extended-range Twin-engine Operations (ETOPS) environment at the time of their initial introduction into service.

Rolls-Royce decided that to succeed in the large engine market of the future, it would have to offer engines for every large civil airliner. In view of the enormous development costs required to bring a new engine to market, the only way to do this would be to have a family of engines based on a common core. The three-shaft design of the RB211 was an ideal basis for the new family as it provided flexibility, allowing the high-pressure (HP), intermediate-pressure (IP) and low-pressure (LP) systems to be individually scaled. Rolls decided to launch a new family of engines, which was formally announced at the 1988 Farnborough Airshow. Reviving a name last used 30 years earlier, the new engine was named the Trent. The name had been used for two previous Rolls-Royce engines: the first Trent was Rolls-Royce’s first working turboprop engine; the second Trent was the 1960s RB203 bypass turbofan, designed to replace the Spey. Rated at {{convert|9980|lbf|kN|abbr=on}} it was the first three-spool engine, forerunner of the RB211 series, but never entered service.

Rolls-Royce has obtained significant sums of "launch investment" from the British government for the Trent programmes, including £200 million approved in 1997 for Trent 8104, 500 and 600 and £250 million for Trent 600 and 900 in 2001. No aid was sought for Trent 1000. Launch investment is repaid to the government by a royalty on each engine sold.[5]

The basis for the Trent was the RB.211-524L, work on which began in 1987.[6]

Design

Like its RB211 predecessor, the Trent uses a three-spool design rather than the more common two-spool configuration. Although more complex, the engine is shorter and more rigid, and suffers less performance degradation in service than an equivalent twin-spool. The advantage three spools gives is that the front-most fan, driven by the third, rearmost turbine, can be tuned to rotate at its optimal (fairly low) speed; the two compressors are driven by the two other turbines via their spools. The three spools are concentric.

All the engines in the Trent family share a similar layout, but their three-spool configuration allows each engine module to be individually scaled to meet a wide range of performance and thrust requirements. For example, the large {{Convert|116|in|cm|adj=on}} diameter fan of the Trent 900 keeps the mean jet velocity at take-off at a relatively low level to help meet the stringent noise levels required by the Airbus A380's customers.[7] Similarly, core size changes enable the high pressure (HP) turbine rotor inlet temperature to be kept as low as possible, thereby minimising maintenance costs. The overall pressure ratio of the Trent 800 is higher than the 700's despite sharing the same HP system and intermediate pressure (IP) turbine; this was achieved by increasing the capacity of the IP compressor and the Low Pressure turbine.

Trent engines use hollow titanium fan blades with an internal Warren-girder structure to achieve strength, stiffness and robustness at low weight. For the Trent 800, the 110-inch diameter[8] fan can rotate at 3300 rpm with a tip speed of about 483 m/s, well above the speed of sound. The single-crystal nickel alloy turbine blades are also hollow, and air is pushed through laser-drilled holes in them to cool them because the gas temperature is higher than the melting point of the blades. Each blade removes up to 560 kW from the gas stream.[9]

The completely redesigned core turbomachinery delivers better performance, noise and pollution levels than the RB211. So significant are the improvements that Rolls-Royce fitted the Trent 700's improved HP system to the RB211-524G and -524H,[10] creating -524G-T and -524H-T respectively.

When the RB211 programme started, it was intended that none of the compression system would require variable stators, unlike the American competition. Unfortunately, it was found that, because of the shallow working line on the Intermediate Pressure Compressor (IPC), at least one row of variable stators was required on the IPC, to improve its surge margin at throttled conditions. This feature has been retained throughout the RB211 and Trent series. Although the original intent was not met, Rolls-Royce eliminated the need for many rows of variable stators, with all their inherent complexity, thereby saving weight, cost and improving reliability.

On 17 January 2008, a British Airways Boeing 777-236ER, operating as BA038 from Beijing to London, crash-landed at Heathrow after both Trent 800 engines lost power during the aircraft's final approach. The subsequent investigation found that ice released from the fuel system had accumulated on the fuel-oil heat exchanger, leading to a restriction of fuel flow to the engines.[11] This resulted in Airworthiness Directives mandating the replacement of the heat exchanger.[12] This order was extended to the 500 and 700 series engines after a similar loss of power was observed on one engine of an Airbus A330[12] in one incident, and both engines in another.[13] The modification involves replacing a face plate with many small protruding tubes with one that is flat.[14]

Variants

Trent 600 – First proposal

The initial variant, the Trent 600, was to power the McDonnell Douglas MD-11 with British Caledonian as the engine's launch customer. However, British Airways cancelled the MD-11 order when it acquired British Caledonian in 1987. Air Europe collapsed in 1991 in the aftermath of the 1990-91 Gulf War, which resulted in the only other customer for the Trent-powered MD-11 being lost. As the MD-11 was itself suffering poor sales due to the passenger version failing to meet performance targets, the Trent 600 was downgraded to a demonstrator programme, engine development being switched to the Trent 700 for the Airbus A330.[15]

Trent 700

{{Main article|Rolls-Royce Trent 700}}

In April 1989, Cathay Pacific became the first customer to specify an Airbus aircraft powered by Rolls-Royce engines when it ordered ten Airbus A330s powered by the Trent 700. The following month Trans World Airlines followed suit with an order for twenty A330s.

The Trent 700 first ran in August 1990, and certification was achieved in January 1994. 90-minutes ETOPS approval was achieved in March 1995, and this was extended to 120 minutes in December 1995 and 180 minutes in May 1996.[16]

The first Trent 700-powered A330 flew in August 1994, and entered service with Cathay Pacific in March 1995.[17]

Trent 800

{{Main article|Rolls-Royce Trent 800}}

At the same time, Boeing was investigating an enlarged development of its 767 model dubbed the 767X, for which Rolls-Royce proposed the Trent 760. By 1990 Boeing abandoned its planned 767X and instead decided to launch a new, larger aircraft family designated 777 with a thrust requirement of {{convert|80000|lbf|kN|abbr=on}} or more. The Trent 700's {{convert|2.47|m|in|abbr=on|adj=on}} diameter fan would not be big enough to meet this requirement, so Rolls proposed a new version with a {{convert|2.80|m|in|abbr=on|adj=on}} fan diameter, designated Trent 800.

Testing of the Trent 800 began in September 1993, and certification was achieved in January 1995.[16] The first Boeing 777 with Trent 800 engines flew in May 1995, and entered service with Cathay Pacific in April 1996.

Initially Rolls-Royce had difficulty selling the engine; British Airways, traditionally a Rolls-Royce customer, submitted a large order for the competing General Electric GE90 engine. The breakthrough came when it won orders from Singapore Airlines, a staunch Pratt & Whitney customer, for its 34 Boeing 777s. The Trent 800 has a 41% share of the engine market on the 777 variants for which it is available.[18]

Trent 8104/8115

In 1998 Boeing proposed new longer range variants of the 777. Taking advantage of the Trent 800's growth capability, Rolls-Royce designed and built an improved engine designated Trent 8104, which was later scaled upwards to the even larger 8115. This development was the first engine to break through {{convert|100000|lbf|kN|abbr=on|adj=on}} thrust and subsequently the first to reach {{convert|110000|lbf|kN|abbr=on}}. However, then GE Aviation president James McNerney (who would later lead Boeing as CEO) successfully persuaded Jack Welch to bear up to $500 million in development money to develop the 777 in exchange for exclusivity in powering the family.[19] Boeing agreed in July 1999 to such a deal with the GE90-110B and GE90-115B to be the sole engines on the long-range 777s.[20] This resulted in the 8104 becoming just a demonstrator programme, despite setting further industry firsts for thrust levels achieved and the first to demonstrate the use of a fully swept wide chord fan.

It would have come in two thrust ratings, {{convert|104000|lbf|kN|abbr=on}} and {{convert|114000|lbf|kN|abbr=on}}, and has been tested up to {{convert|117000|lbf|kN|abbr=on}}. As Boeing's thrust requirements increased, Rolls-Royce began developing the {{convert|115000|lbf|kN|abbr=on}} 8115 which was to be an enlarged version of the 8104, with a {{convert|3.05|m|in|abbr=on}} fan and a core scaled up 2.5 percent from the 8104. It featured swept-back fan blades and a host of new technologies such as contra-rotating spools.

The 8115 was never built, as Boeing signed a contract with General Electric to be the sole supplier of engines for the 777X aircraft, owing to GEs willingness to risk-share on the airframe part of the project, and sales of the aircraft to GECAS.

Trent 500

{{Main article|Rolls-Royce Trent 500}}

In 1995, Airbus began considering an engine for two new long-range derivatives of its four-engine A340 aircraft, designated A340-500/-600. In April 1996, Airbus signed an agreement with General Electric to develop a suitable engine, but decided not to proceed when GE demanded an exclusivity deal on the A340. After a contest with Pratt & Whitney, Airbus announced on 15 June 1997 at the Paris Air Show that it had selected the Trent 500 to power the A340-500 and -600.[21] Two years later, in May 1999, the Trent 500 first ran and certification was achieved in December 2000. It entered service on the A340-600 with Virgin Atlantic Airways in July 2002 and on the ultra-long range A340-500 with Emirates in December 2003.

After production of the Airbus A340 ended in 2011, a total of 131 A340-500/-600 had been delivered with 524 Trent 500 engines altogether; Lufthansa is the largest operator, with 24 delivered A340-600.[22]

Trent 900

{{Main article|Rolls-Royce Trent 900}}

In the early 1990s, Airbus had begun development of a larger successor to the Boeing 747, an aircraft designated A3XX, which was later to be formally launched as the Airbus A380. By 1996, its definition had progressed to the extent that Rolls-Royce was able to announce that it would develop the Trent 900 to power the A380. In October 2000, the Trent 900 became the A380's launch engine when Singapore Airlines specified the engine for its order for 10 A380s; this was quickly followed by Qantas in February 2001.

The Trent 900 first ran on 17 May 2004 on Airbus' A340-300 testbed, replacing the port inner CFM56-5 engine, and its final certification was granted by the European Aviation Safety Agency (EASA) on 29 October 2004 and the Federal Aviation Administration (FAA) on 4 December 2006.[23][26] Rolls-Royce announced in October 2007 that production of the Trent 900 had been restarted after a twelve-month suspension caused by delays to the A380.[24]

On 27 September 2007, British Airways announced the selection of the Trent 900 to power 12 A380 aircraft,[25] helping to take the engine's share of the A380 engine market to 52% at the end of February 2009.

On 4 November 2010, a Trent 900 experienced an uncontained failure on Qantas Flight 32 over Singapore. After investigation, Rolls-Royce announced the problem was specific to the Trent 900,[26] and in particular unrelated to failure of a Trent 1000 under test.[27] However, others have noted that although the specific part may be only found in the 900, in both cases the intermediate pressure turbine and lubrication system are suspect.[28]

Trent 600 – Second proposal

In July 2000, Rolls-Royce signed an agreement with Boeing to offer the Trent 600 engine on developments of 767 and 747 aircraft.[29] The 767 variant was to be a new longer-range version of the Boeing 767-400ER to be powered by the Trent 600 and Engine Alliance GP7172, although in the end this aircraft was never launched. When Boeing finally launched the 747-8 in 2005 it announced that the General Electric GEnx would be the only engine that would be available for the 747-8.

Trent 1000

{{Main article|Rolls-Royce Trent 1000}}{{Trim}}

On 6 April 2004 Boeing announced that it had selected two engine partners for its new 787, Rolls-Royce and General Electric. Initially, Boeing considered the idea of sole sourcing the powerplant for the 787, with GE being the most likely candidate. However, potential customers demanded choices and Boeing relented.{{Citation needed|date=December 2011}} Both engine types will have a standard interface with the aircraft, allowing any 787 to be fitted with either a GE or Rolls-Royce engine at any time as long as the pylon is also modified.{{ref|1|Note 1}}

In June 2004, the first public engine selection was made by Air New Zealand, who chose the Trent 1000 for its two firm orders. In the largest 787 order, that of Japan's All Nippon Airways, Rolls-Royce was selected as the engine supplier on 13 October 2004. The deal is valued at $1 billion (£560 million) and covers 30 787-3s and 20 787-8s. The Trent 1000 will be the launch engine on all three current 787 models, the -8 with ANA, the -9 with Air New Zealand and the -10 with Singapore Airlines.[30] On 7 July 2007, Rolls Royce secured its largest ever order from an aircraft leasing company when ILFC placed an order worth $1.3 billion at list prices for Trent 1000s to power 40 of the 787s which it has on order,[31] and on 27 September 2007 British Airways announced the selection of the Trent 1000 to power 24 Boeing 787 aircraft.

The first run of the Trent 1000 was on 14 February 2006,[32] with first flight on Rolls-Royce's own flying testbed (a modified Boeing 747-200) successfully performed on 18 June 2007 from TSTC Waco Airport in Waco, TX.[33] The engine received joint certification from the FAA and EASA on 7 August 2007[34] (written 7/8/7 outside the US). Entry into service was delayed to September 2011 following a series of delays to the Boeing 787 programme.[35] The Trent 1000, along with the General Electric GEnx, is distinguished from other turbofans with the use of noise-reducing chevrons on the engine nacelle.{{Citation needed|date=December 2011}}

In early 2018, of 1277 orders, 681 selected the GEnx ({{#expr:681/1277*100round0}}%), 420 the Trent 1000 ({{#expr:420/1277*100round0}}%) and 176 were undecided ({{#expr:176/1277*100round0}}%).[36]

Trent 1500

The Trent 1500 was proposed to replace the Airbus A340-500/600 Trent 500 to better compete with the Boeing 777-200LR/300ER, retaining its {{cvt|2.47|m}} fan diameter and nacelle, but with the smaller and more advanced Trent 1000 gas generator and LP turbine.[37] The evolution of the A350 from the initial to the XWB design did replace the A340 development.

Trent XWB

{{Main article|Rolls-Royce Trent XWB}}

The Trent XWB is a series of turbofan engines, developed from the RB211 and used exclusively for the Airbus A350 XWB.[38] It has a take-off thrust range of {{convert|75000|-|97000|lbf|kN|abbr=on}} and a fan diameter of 118 in (3.0 m).[39]

Trent 7000

{{Main article|Rolls-Royce Trent 7000}}

Officially announced on 14 July 2014 at the Farnborough Airshow the Trent 7000 is to be the exclusive engine for the Airbus A330neo. The Trent 7000 will use previous experience from the Trent 700 as used on the A330, architecture from the Trent 1000-TEN, which is the latest version of the Trent 1000, and technology from the Trent XWB. The engines will offer a thrust range of {{convert|68000|–|72000|lbf|kN|abbr=on}} and have an electronic bleed air system (EBAS). Compared to the A330 engines the Trent 7000 will improve specific fuel consumption by twelve per cent (net ten per cent), double the bypass ratio to 10:1, increase maximum compression ratio to 50:1 and halve emitted noise energy enabling the A330neo to meet the stricter London airport (QC) noise regulations of QC1/0.25 for departure and arrivals respectively.[40][41] The Trent 7000 performed its first engine test run on 27 November 2015.[42] The fan diameter is 112 inches (2845 mm) and has 20 fan blades.[43]

Non-aircraft variants

MT30

{{Main article|Rolls-Royce MT30}}

The MT30 is a derivative of the Trent 800, (with a Trent 500 gearbox fitted), producing 36 MW for maritime applications. The current version is a turboshaft engine, producing 36 MW, using the Trent 800 core to drive a power turbine which takes power to an electrical generator or to mechanical drives such as waterjets or propellers. Amongst others, it powers the Royal Navy's Queen Elizabeth class aircraft carriers.

Industrial Trent 60 Gas Turbine

This derivative is designed for power generation and mechanical drive, much like the Marine Trent. It delivers up to 66 MW of electricity at 42% efficiency.[44] It comes in two key versions DLE and WLE. The WLE is water injected, allowing it to produce 58 MW in ISA conditions instead of 52 MW. It shares components with the Trent 700 and 800.[44] The heat from the exhaust, some 416–433 °C,[44] can be used to heat water and drive steam turbines, improving efficiency of the package. Besides Rolls-Royce, a leading packager of the Trent 60 is UK-based Centrax LTD,[45] a privately owned engineering firm based in Newton Abbot, UK.

Future developments

On 26 February 2014, Rolls-Royce detailed its Trent future developments. The Advance is the first design could be ready from the end of the 2010s and aim to offer at least 20% better fuel burn than the first generation of Trents. Next is the UltraFan, which could be ready for service from 2025, a geared turbofan with a variable pitch fan system, promising at least 25% improvement in fuel burn.[46] The Advance bypass ratio should exceed 11:1 and its overall pressure ratio 60:1, while the geared/variable pitch UltraFan aims for a 15:1 bypass ratio and 70:1 overall pressure ratio.[47]

Advanced Low-Pressure System (ALPS)

After flights test in 2014 of CTi fan blades with a titanium leading edge and carbon casing, they had indoor and outdoor tests in 2017, including crosswind, noise and tip clearance studies, flutter mapping, performance and icing conditions trials.

The twin fuel-distribution system in the lean-burn combustor adds complexity by doubling the pipework and with a sophisticated control and switching system but should improve fuel consumption and lower NOx emissions.

Hybrid ceramic bearings are newly configured to deal with loading changes and will cope with higher temperatures.[56]

More variable vanes in one IP and four HP compressor stages will be optimised for constant changes through the flight envelope.

An air pipe is produced by additive manufacturing and prototype components come from new suppliers.

The Advance3 will survey bearing load, water ingestion, noise sources and their mitigation, heat and combustor rumble while blade-tip, internal clearances and adaptive control operation are radiographed in-motion to verify the thermo-mechanical modelling.

The Boeing New Midsize Airplane needs falls in its thrust range.

Advanced cooled metallic components and ceramic matrix composite parts will be tested in a late 2018 demonstrator based on a Trent XWB-97 within the high temperature turbine technology (HT3) initiative.[50]

The core will be combined with a Trent XWB-84 fan and a Trent 1000 LP turbine for mid-2017 ground testing.[51]

The Advance3 demonstrator was sent from the Bristol production facility to the Derby test stand in July 2017 to be evaluated till early 2018.[50]

The demonstrator began initial runs at Derby in November 2017.[52]

In early 2018, the demonstrator attained 90% core power, reaching a {{cvt|450|psi|bar}} P30 pressure at the rear of the {{abbr|HP|high pressure}} compressor, while measuring bearing loads, changed by the different compressor arrangement.[53]

The lean burn combustor did not generate any rumble as further tests will cover water ingestion, noise, X-rays of the engine operating, and core-zone and hot-end thermal surveys.[48]

By July 2018, the Advance3 core ran at full power.[54]

Advanced low-emission combustion system (ALECSys)

A standalone engine will test the ALECSys on ground before an other will be flight tested.[50] Indoor ground tests of the lean-burn combustor were concluded on a modified Trent 1000 in January 2018, before being sent to Manitoba for cold-weather trials in February 2018, covering start-ups and ice ingestion. Noise testing will follow on an outside rig, then flight tests in the next couple of years after 2018.[48]

UltraFan

The Ultrafan will keep the Advance core but won't be a true 3-shaft design but more a "two-and-a-half" configuration with the fan geared. As the fan will vary pitch to be optimised for each flight phase, it won't need a thrust reverser. Rolls-Royce will use carbon composite fan blades instead of its usual hollow titanium blades, and along with new material adoption will save {{convert|750|lb|kg|abbr=on}} per engine.[55]

The variable pitch fan will facilitate low pressure ratio fan operability.[56] Rolls-Royce will work with Industria de Turbo Propulsores to test IP turbine technologies that will go into the UltraFan.[57] In Dahlewitz near Berlin, Rolls-Royce has built a power rig simulating loading conditions in flight, sized for {{convert|15|-|80|MW|hp|abbr=on}} gear systems; and recruits 200 engineers. The ratio of the initial test gear will approach 4:1 and thrust could be up to {{cvt|100,000|lbf|kN}}.[58] The specially constructed test rig is an €84 million ($94 million) investment.[50]

In partnership with Liebherr, the 100,000 hp UltraFan gearbox was first run in October 2016.[59][60]

After the initial set of low-speed fan rig tests and the casting of second-generation titanium aluminide IP turbine blades, the initial UltraFan demonstrator concept design should be frozen in 2017.[51]

Tests simulated aircraft pitch and roll on an attitude rig in September 2016 to assess oil flow in the gearbox.

The gearbox went through high-power tests in May 2017.[61][62]

The UltraFan will be 3 m (118 in) in diameter and its fan blades with titanium leading edges are evaluated under the ALPS programme.[50]

At the September 2017 International Society for Air Breathing Engines (ISABE) conference in Manchester, UK, Rolls-Royce's Chief Technology Officer Paul Stein announced it reached {{cvt|70,000|hp|kW}}.[63]

In early 2018, a third gearbox was tested as testing assessed on endurance and reliability.

the first gearbox was disassembled for evaluation, confirming the component's performance predictions.

A complete demonstrator will be built in a few years from 2018.[48]

In April 2018, Airbus agreed to provide aircraft integration and its nacelle and for flight testing, co-funded by the European Union research programme Clean Sky 2.[64]

At the April 2018 ILA Berlin Air Show, flight testing was confirmed on Rolls-Royce's Boeing 747-200.

The 1 m diameter planetary gearbox has five planet gears.[54]

Applications

  • Airbus A330
  • Airbus A330neo (exclusive engine)
  • Airbus A340 (-500 and -600 series only)
  • Airbus A350 (exclusive engine)
  • Airbus A380
  • Boeing 777 (-200, -200ER and -300 series only)
  • Boeing 787 Dreamliner

Specifications

Gas Turbine Engines[67]
Variant Thrust Weight Bypass Pressure Config Fan Cruise TSFC First run Application
Trent 700[68]67,500|-|71,100|lbf|kN|disp=br|order=flip}}6160|kg|lb|disp=br}} 5.0:1[96] 36:1[69] 8 IPC, 6 HPC
1 HPT, 1 IPT, 4 LPT
97.4|in|cm}}
26 blades
0.562|lb/lbf/h|g/kN/s|disp=br}} 1990Airbus A330
Trent 800[70]75,000|-|93,400|lbf|kN|disp=br|order=flip}}6078|kg|lb|disp=br}} 6.4:1 33.9-40.7:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 5 LPT
110|in|cm}}
26 blades
0.560|lb/lbf/h|g/kN/s|disp=br}} 1993Boeing 777-200/200ER/300
Trent 500[71]53,000|-|56,000|lbf|kN|disp=br|order=flip}}4990|kg|lb|disp=br}} 7.6:1 36.3:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 5 LPT
97.4|in|cm}}
26 blades
0.542|lb/lbf/h|g/kN/s|disp=br}} 1999Airbus A340-500/600
Trent 60063,000|lbf|kN|disp=br|order=flip}}10,660|lb|kg|order=flip|disp=br}} 41:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 5 LPT
102|in|cm}}
26 blades
0.542|lb/lbf/h|g/kN/s|disp=br}} dropped747-400 developments
Trent 900[72]75,152|-|84,098|lbf|kN|disp=br|order=flip}}6,246|kg|lb|disp=br}} 8.7–8.5:1 37–39:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 5 LPT
116|in|cm}}
24 blades
0.522|lb/lbf/h|g/kN/s|disp=br}} 2004Airbus A380
Trent 1000[73]64,100|-|74,400|lbf|kN|disp=br|order=flip}}5,936|–|6,120|kg|lb|disp=br}} 10:1 50:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 6 LPT
112|in|cm}}
20 blades
0.5062|lb/lbf/h|g/kN/s|disp=br}} 2006Boeing 787
Trent XWB[74]84,000|-|97,000|lbf|kN|disp=br|order=flip}}7,277|kg|lb|disp=br}} 9.6:1 50:1 8 IPC, 6 HPC
1 HPT, 2 IPT, 6 LPT
118|in|cm}}
22 blades
{{#expr:0.562*0.85round3}}|lb/lbf/h|g/kN/s|disp=br}}{{efn|15 per cent fuel consumption advantage over the original Trent engine}} 2010Airbus A350 XWB
Trent 7000[75]68,000|-|72,000|lbf|kN|disp=br|order=flip}}{{#expr:13580+3500}}|lb|kg|0|disp=br|order=flip}} {{efn|{{cvt|3500|lbs|kg|0}} more than the {{cvt|6160|kg|lbs|0}} Trent 700 }} 10:1 50:1 8 IPC, 6 HPC
1 HPT, 1 IPT, 6 LPT
112|in|cm}}
20 blades
{{#expr:0.562*0.9round3}}|lb/lbf/h|g/kN/s|disp=br}}{{efn|10% better than Trent 700}} 2015Airbus A330neo

See also

  • ANTLE
{{Portal|Aviation|United Kingdom}}{{Aircontent
|related=
  • Rolls-Royce RB211
  • Rolls-Royce Trent 500
  • Rolls-Royce Trent 700
  • Rolls-Royce Trent 800
  • Rolls-Royce Trent 900
  • Rolls-Royce Trent 1000
  • Rolls-Royce MT30

|similar engines=
|lists=
  • List of aircraft engines

|see also=
}}

Footnotes

Notes

1. ^{{cite web|title=Biggest Market share for new generation of widebodied aircraft |url=http://www.rolls-royce.com/civil_aerospace/overview/default.jsp |accessdate=2007-07-22 |archiveurl=https://web.archive.org/web/20070718184017/http://www.rolls-royce.com/civil_aerospace/overview/default.jsp |archivedate=2007-07-18 |deadurl=yes |df= }}
2. ^{{cite news|title=GE holds the key to power - Airliner delivery analysis 2007|publisher=Flight International|date=21 February 2007|url=http://www.flightglobal.com/articles/2007/02/21/212126/ge-holds-the-key-to-power-airliner-delivery-analysis.html|accessdate=2007-02-23 }}
3. ^See {{cite book|last=Gunston|first=Bill|title=World Encyclopedia of Aero Engines|year=1989|publisher=Patrick Stephens Limited|location=Cambridge, United Kingdom|isbn=978-1-85260-163-8}}
4. ^{{cite book | last = Pugh | first = Peter | title = The Magic of a Name, Part Three | publisher = Icon Books | year = 2002 | isbn = 1-84046-405-4}}
5. ^{{cite web |url=https://publications.parliament.uk/pa/cm200405/cmselect/cmtrdind/151/15106.htm#a20 |title=Repayable launch investment (RLI) |publisher=House of Commons |accessdate=2010-11-22 }}
6. ^"World Encyclopedia of Aero Engines—5th edition" by Bill Gunston, Sutton Publishing, 2006, p.201
7. ^{{cite web |date = 1 November 2004 |url = http://www.atwonline.com/magazine/article.html?articleID=1086 |title = The fan is the thing |publisher = Air Transport World |accessdate = 2007-02-03 |author = Donoghue, J.A. |deadurl = yes |archiveurl = https://web.archive.org/web/20070902013214/http://www.atwonline.com/magazine/article.html?articleID=1086 |archivedate = 2 September 2007 |df = dmy-all }}
8. ^EASA Type Certificate for Trent 800
9. ^Spittle, Peter. "Gas turbine technology" Rolls-Royce plc, 2003. Retrieved: 21 July 2012.
10. ^{{cite news | title = Rolls-Royce standardises on hybrid RB211 after entry success | publisher = Flight International | url = http://www.flightglobal.com/articles/1998/05/06/36700/rolls-royce-standardises-on-hybrid-rb211-after-entry.html | date = 6 May 1998 | accessdate = 2007-01-20}}
11. ^{{cite news | title = Rolls-Royce to modify Trent as tests replicate BA 777 icing|publisher = Flight International | date = 12 March 2009 | url = http://www.flightglobal.com/articles/2009/03/12/323769/rolls-royce-to-modify-trent-as-tests-replicate-ba-777.html | accessdate = 2009-03-15 }}
12. ^{{cite web |title=Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines |url=http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAD.nsf/0/28a1f5ba17de1ccc862576f500578b42/$FILE/2010-07-01.pdf |archive-url=https://web.archive.org/web/20151019042222/http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAD.nsf/0/28a1f5ba17de1ccc862576f500578b42/%24FILE/2010-07-01.pdf |dead-url=yes |archive-date=19 October 2015 |df=dmy-all }}
13. ^{{cite web |title=EASA suspects dual-engine icing in A330 incident |url=http://www.flightglobal.com/news/articles/easa-suspects-dual-engine-icing-in-a330-incident-339432/ |author=David Kaminsky-Morrow |publisher=FlightGlobal |date=12 March 2010 }}
14. ^{{cite web |url=http://www.flightglobal.com/news/articles/rolls-royce-trent-modification-will-eliminate-fuel-ice-338177/ |title=Rolls-Royce: Trent modification will 'eliminate' fuel-ice risk |author=David Kaminsky-Morrow |publisher=FlightGlobal |date=9 Feb 2010 }}
15. ^{{cite web|url=http://www.janes.com/articles/Janes-Aero-Engines/Rolls-Royce-Trent-600-United-Kingdom.html |title=Trent 600 |publisher=Jane’s Information Group |accessdate=2010-11-22}}
16. ^{{cite news|title=Aero-Engines—Rolls-Royce Trent |publisher=Jane's |date=13 February 2001 |url=http://www.janes.com/aerospace/civil/news/jae/jae010213_2_n.shtml |accessdate=2007-07-26 |archiveurl=https://web.archive.org/web/20071110025612/http://www.janes.com/aerospace/civil/news/jae/jae010213_2_n.shtml |archivedate=2007-11-10 |deadurl=yes |df= }}
17. ^{{cite web|url=http://www.planespotters.net/Production_List/Airbus/A330/071,B-HLA-Dragonair.php|publisher=planespotters.net|accessdate=28 March 2015|title=B-HLA Dragonair Airbus A330-300—cn 071|deadurl=yes|archiveurl=https://web.archive.org/web/20141205044355/http://www.planespotters.net/Production_List/Airbus/A330/071,B-HLA-Dragonair.php|archivedate=5 December 2014|df=dmy-all}}
18. ^{{cite web|title=Rolls-Royce Trent 800|url=http://www.rolls-royce.com/civil/products/largeaircraft/trent_800/|accessdate=2009-02-15 }}
19. ^{{cite web|url=https://www.seattletimes.com/business/mcnerneyrsquos-impact-at-ge-3m-also-stirs-debate/|title=McNerney’s impact at GE, 3M also stirs debate|first=Seattle Times|last=staff|date=29 November 2014|website=The Seattle Times|accessdate=2 February 2019}}
20. ^{{cite web|url=https://www.bloomberg.com/tosv2.html?vid=&uuid=f35a3130-26f8-11e9-b57d-8d837e000792&url=L2J1c2luZXNzd2Vlay9hcmNoaXZlcy8xOTk5L2IzNjQxMDk2LmFyYy5odG0=|title=Bloomberg - Are you a robot?|author=|date=|website=www.bloomberg.com|accessdate=2 February 2019}}
21. ^{{cite web | title = AIRBUS SHOOTS FOR 25 |url=http://aviationweek.com/awin/airbus-shoots-25 | accessdate = 2015-03-28|date=21 July 1997 |publisher = Aviationweek}}
22. ^{{cite web |url=http://www.airbus.com/company/market/orders-deliveries/?eID=dam_frontend_push&docID=39444 |title=Airbus Orders & deliveries |format=Excel |publisher=Airbus |accessdate=12 July 2014 |deadurl=yes |archiveurl=https://web.archive.org/web/20140714123234/http://www.airbus.com/company/market/orders-deliveries/?eID=dam_frontend_push&docID=39444 |archivedate=14 July 2014 |df=dmy-all }}
23. ^{{cite journal | author = European Aviation Safety Agency | title = RB211 Trent 900 Series Engines Type-Certificate Data Sheet | date = 2005-08-11 | url = http://www.easa.eu.int/doc/Certification/Design_Appro/Engines/TCDS_Rolls_Royce_RB211_Trent_900_E_012.pdf | accessdate = 2007-01-26 | archiveurl=https://web.archive.org/web/20061013181911/http://www.easa.eu.int/doc/Certification/Design_Appro/Engines/TCDS_Rolls_Royce_RB211_Trent_900_E_012.pdf |archivedate=2006-10-13}}
24. ^{{cite news | title = Rolls-Royce settles into a launch groove for A380 | publisher = Flight International | date = 15 October 2007 | url = http://www.flightglobal.com/articles/2007/10/15/218490/rolls-royce-settles-into-a-launch-groove-for-a380.html | accessdate = 2007-10-17 }}
25. ^{{cite news | title = Rolls-Royce hit by Airbus delays | publisher = BBC News | date = 6 October 2006 | url = http://news.bbc.co.uk/1/hi/business/5412378.stm | accessdate = 2007-02-15}}
26. ^{{cite web |url=http://ainonline.com/aviation-news/2010-11-09/rolls-royce-a380-engine-failure-specific-trent-900 |title=Rolls-Royce: A380 Engine Failure Specific to Trent 900}}
27. ^{{cite web |url=http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=comm&id=news/awx/2010/09/01/awx_09_01_2010_p0-251440.xml |title=Oil Fire Suspected In Trent 1000 Failure}}
28. ^{{cite web |url=http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=awst&id=news/awst/2010/11/15/AW_11_15_2010_p28-268679.xml&headline=Qantas%20A380%20Investigation%20Go%20Beyond%20Engines |title= Qantas A380 Investigation Go Beyond Engines}}{{dead link|date=July 2016}}
29. ^{{cite web | title = Rolls-Royce signs Trent 600 agreement with Boeing | url = http://www.investegate.co.uk/article.aspx?id=200007251102343932O | accessdate = 2015-03-28 }}
30. ^{{cite news|title=787 special: Starting block | publisher = Flight International|date=26 September 2006|url=http://www.flightglobal.com/articles/2006/09/26/209177/787-special-starting-block.html|accessdate = 2007-02-18 }}
31. ^{{cite web|title=ILFC selects Rolls-Royce Trent 1000 for 40 Boeing 787s |url=http://www.rolls-royce.com/media/showPR.jsp?PR_ID=40516 |accessdate=2007-07-14 |archiveurl=https://web.archive.org/web/20070927202625/http://www.rolls-royce.com/media/showPR.jsp?PR_ID=40516 |archivedate=2007-09-27 |deadurl=yes |df= }}
32. ^{{cite news | title = Trent 1000 completes testbed run | publisher = Flight International | date = 22 February 2006 | url = http://www.flightglobal.com/articles/2006/02/22/204974/trent-1000-completes-testbed-run.html | accessdate = 2007-02-18 }}
33. ^{{cite news | title = Rolls-Royce flies Boeing 787’s Trent 1000 engine on 747 testbed | publisher = Flight International | date = 19 June 2007 | url = http://www.flightglobal.com/articles/2007/06/19/214894/paris-2007-rolls-royce-flies-boeing-787s-trent-1000-engine-on-747.html | accessdate = 2007-06-19 }}
34. ^{{cite news | title = European and US regulators certify Trent 1000 for Boeing 787 | publisher = Flight International | date = 7 August 2007 | url = http://www.flightglobal.com/articles/2007/08/07/215951/european-and-us-regulators-certify-trent-1000-for-boeing-787.html | accessdate = 2007-08-07 }}
35. ^{{cite news | title = Boeing 787 Dreamliner on track to fly in June | publisher = Reuters | date = 27 May 2009 | url = https://www.reuters.com/article/rbssIndustryMaterialsUtilitiesNews/idUSN2726323420090527 | accessdate = 2009-05-29 }}
36. ^{{cite news |url= https://www.flightglobal.com/news/articles/data-snapshot-airbus-and-boeing-are-head-to-head-in-445593/ |title= Airbus and Boeing are head-to-head in the widebody sector |date= 6 Feb 2018 |work= Flightglobal}}
37. ^{{cite news |url= https://www.flightglobal.com/news/articles/exclusive-enhanced-a340-to-take-on-777-203391/ |title= Enhanced A340 to take on 777 |work= Flight International |date= 29 November 2005}}
38. ^{{cite web|url=http://www.rolls-royce.com/civil/products/largeaircraft/trent_xwb/ |title=Trent XWB |publisher=Rolls-Royce |date= |accessdate=2013-05-09}}
39. ^{{cite news | title = Airbus revises A350 Trent XWB thrust values following weight increases | publisher = Flight International | date = 13 May 2009 | url = http://www.flightglobal.com/articles/2009/05/13/326468/airbus-revises-a350-trent-xwb-thrust-values-following-weight.html }}
40. ^{{cite web|title=Airbus selects Rolls-Royce Trent 7000 as exclusive engine for the A330neo|url=http://www.rolls-royce.com/news/press_releases/2014/140714_a330neo.jsp|website=www.rolls-royce.com/|publisher=Rolls Royce|date=14 July 2014}}
41. ^{{cite web|author1=Guy Norris|title=Rolls-Royce Details Trent 7000 Plans For A330neo|url=http://aviationweek.com/farnborough-2014/rolls-royce-details-trent-7000-plans-a330neo||website=aviationweek.com|publisher=Aviation Week|date=14 July 2014}}
42. ^{{cite web|title=Rolls-Royce celebrates first run of Trent 7000 engine|url=https://50skyshades.com/news/manufacturer/rolls-royce-celebrates-first-run-of-trent-7000-engine|date = 27 November 2015}}
43. ^{{cite web|title=Trent 7000 infographic|url=http://www.rolls-royce.com/customers/civil-aerospace/products/civil-large-engines/trent-7000/trent-7000-infographic.aspx|website=www.rolls-royce.com|publisher=Rolls-Royce}}
44. ^{{cite web|url=http://www.energy.siemens.com/ru/en/fossil-power-generation/gas-turbines/industrial-trent-60.htm|title=Gas Turbine Industrial Trent 60|accessdate=2015-03-28}}
45. ^{{cite web|url=http://www.centraxgt.com/products/generator-set-trent-60-wle-66-mw|title=Generator Set Trent 60 WLE (66 MW)|accessdate=2015-03-28|publisher=Centrax Gas Turbines|deadurl=yes|archiveurl=https://web.archive.org/web/20150402180551/http://www.centraxgt.com/products/generator-set-trent-60-wle-66-mw|archivedate=2 April 2015|df=dmy-all}}
46. ^{{cite press release |url= http://www.rolls-royce.com/media/press-releases/yr-2014/260214-next-generation.aspx |title=Rolls-Royce shares next generation engine designs |publisher=rolls-royce.com |date= 26 February 2014}}
47. ^{{cite news |url= http://aviationweek.com/commercial-aviation/rolls-royce-reveals-next-gen-engine-plan |title=Rolls-Royce Reveals Next-Gen Engine Plan |work= Aviation Week |date= 26 February 2014}}
48. ^-->Rolls-Royce will ground test in 2018 its ALPS demonstrator: a Trent 1000 fitted with composite fan blades and case, including bird strike trials.{{cite news |url= https://www.flightglobal.com/news/articles/analysis-rolls-royce-advances-new-technology-demons-445377/ |title= Rolls-Royce advances new-technology demonstrators |date= 6 Feb 2018 |author= Michael Gubisch |work= Flightglobal}}
49. ^{{cite news |url= http://aviationweek.com/caring-engines-today-and-future/advance3-moving-state-art-forward |title= Advance3 - Moving The State Of The Art Forward |date= 23 Feb 2016 |work= Aviation Week}}
50. ^10 11 {{cite news |url= https://www.flightglobal.com/news/articles/analysis-rolls-royce-moves-forward-with-advance3-de-438290/ |author= Dominic Perry |work= Flight Global |title= Rolls-Royce moves forward with Advance3 demonstrator |date= 16 June 2017}}
51. ^{{cite news |url= http://aviationweek.com/commercial-aviation/rolls-royce-might-pitch-ultrafan-boeing-new-midsize-airplane |title= Rolls-Royce Might Pitch UltraFan For Boeing New Midsize Airplane |date= 3 Apr 2017 |author= Guy Norris |work= Aviation Week & Space Technology}}
52. ^{{cite news |url= http://aviationweek.com/commercial-aviation/rolls-marks-trent-and-advance-milestones |title= Rolls Marks Trent And Advance Milestones |date= Nov 27, 2017 |author= Guy Norris |work= Aviation Week Network}}
53. ^{{cite news |url= http://aviationweek.com/singapore-airshow-2018/next-gen-core-demo-boost-rolls-royce |title= Next-Gen Core Demo Boost for Rolls-Royce |date= Feb 6, 2018 |author= Guy Norris |work= Aviation Week Network}}
54. ^{{cite news |url= http://aviationweek.com/propulsion/ultrafan-concept-frozen-rolls-throttles-new-core |title= UltraFan Concept Frozen As Rolls Throttles Up New Core |date= Jul 15, 2018 |author= Guy Norris |work= Aviation Week & Space Technology}}
55. ^{{cite news |url= http://aviationweek.com/commercial-aviation/rolls-royce-details-advance-and-ultrafan-test-plan |title= Rolls-Royce Details Advance And UltraFan Test Plan |work= Aviation Week & Space Technology |date= 25 August 2014}}
56. ^{{cite web |url= https://www.aerosociety.com/Assets/Docs/Events/746/GBD_Propulsion_211014_RR_1.pdf |title= Next Generation Engines |publisher= Rolls Royce |author= Mark Thomas |date= 21 October 2014}}
57. ^{{cite press release |url= http://www.rolls-royce.com/media/press-releases/yr-2015/pr-15-07-2015-rr-rolls-royce-joins-with-itp.aspx |title= Rolls-Royce joins with ITP for UltraFan™ research programme |date= 15 July 2015 |publisher= Rolls-Royce}}
58. ^{{cite news |url= http://aviationweek.com/technology/rolls-freezes-design-first-ultrafan-test-gear |title= Rolls-Royce Freezes Design Of First UltraFan Test Gear |date= 27 May 2015 |author= Guy Norris |work= Aviation Week & Space Technology}}
59. ^{{cite press release |url= http://www.rolls-royce.com/media/press-releases/yr-2016/pr-24-10-2016-rr-runs-worlds-most-powerful-aerospace-gearbox-for-the-first-time.aspx |title= Rolls-Royce runs world’s most powerful aerospace gearbox for the first time |date= 24 October 2016 |publisher= Rolls-Royce }}
60. ^{{cite news |url= http://www.ainonline.com/aviation-news/air-transport/2016-10-24/rolls-royce-performs-first-run-ultrafan-gearbox |title= Rolls-Royce Performs First Run of UltraFan Gearbox |work= Aviation International News |author= Gregory Polek |date= 24 October 2016}}
61. ^{{cite news |url= https://www.flightglobal.com/news/articles/ultrafan-gearbox-starts-high-power-testing-437613/ |title= UltraFan gearbox starts high-power testing |date= 25 May 2017 |work= Flight Global }}
62. ^{{cite news |url= http://atwonline.com/engines/rolls-royce-begins-ultrafan-gearbox-high-power-testing |title= Rolls-Royce begins UltraFan gearbox high-power testing |date= 25 May 2017 |author= Victoria Moores |work= Aviation Week Network}}
63. ^{{cite press release |url= https://www.rolls-royce.com/media/press-releases/yr-2017/04-09-2017-rr-sets-new-aerospace-record-with-ultrafan-power-gearbox.aspx |title= Rolls-Royce sets new aerospace record with UltraFan® Power Gearbox |date= 4 September 2017 |publisher= Rolls-Royce}}
64. ^{{cite press release |url=http://www.airbus.com/newsroom/press-releases/en/2018/04/airbus-and-rolls-royce-sign-ultrafan-engine-integration-collabor.html |date= 25 April 2018 |title= Airbus and Rolls-Royce sign UltraFan engine integration collaboration agreement |publisher= Airbus}}
65. ^-->The demonstrator will generate {{cvt|70,000-80,000|lbf|kN}} of thrust, exploiting current testing on the Advance 3 and the 70,000 hp gearbox.Its fan diameter could be up to {{cvt|140|in|cm|0}}, compared to the Trent XWB's {{cvt|118|in|cm|0}} and the GE9X's {{cvt|134|in|cm|0}}.{{cite news |url= http://aviationweek.com/commercial-aviation/airbus-rolls-ultrafan-demonstrator-fly-747-testbed |title= Airbus-Rolls UltraFan Demonstrator To Fly On 747 Testbed |date= May 2, 2018 |author= Guy Norris |work= Aviation Week Network}}
66. ^-->Along with eliminating the thrust reverser, a short slim nacelle would be lighter and less draggy, but in reverse-thrust the flow would be distorted, having to be turned around the nozzle into the bypass duct, and then partly reversed again into the intermediate compressor.The large fan could lead to gull-wing airframes.{{cite news |url= http://aviationweek.com/commercial-aviation/airbus-rolls-ultrafan-demonstrator-using-boeing-747-testbed |title= Airbus-Rolls UltraFan Demonstrator Using Boeing 747 As Testbed |date= May 9, 2018 |author= Guy Norris |work= Aviation Week & Space Technology }}
67. ^{{cite news |url= http://www.geocities.jp/nomonomo2007/AircraftDatabase/AWdata/AviationWeekPages/GTEnginesAWJan2008.pdf |title= Gas Turbine Engines |date= 28 January 2008 |work= Aviation Week |pages= 137–138}}
68. ^{{cite web |title= Type-Certificate Data Sheet RB211 Trent 700 series engines |url= https://www.easa.europa.eu/system/files/dfu/Trent%20700%20series%20issue%2003.pdf |date= 14 October 2014 |publisher= EASA |access-date= 1 July 2017 |archive-url= https://web.archive.org/web/20160816231340/https://www.easa.europa.eu/system/files/dfu/Trent%20700%20series%20issue%2003.pdf |archive-date= 16 August 2016 |dead-url= yes |df= dmy-all }}
69. ^{{cite web |publisher= Rolls-Royce |url= http://www.rolls-royce.com/site-services/images/trent-700-poster.aspx |title= Trent 700 poster}}
70. ^{{cite web |title= Trent 800 Type-Certificate Data Sheet |url= https://www.easa.europa.eu/system/files/dfu/EASA-TCDS-E.047_Rolls--Royce_plc_RB211_Trent_800_series_engines-02-10102013.pdf |publisher= EASA |access-date= 1 July 2017 |archive-url= https://web.archive.org/web/20161129142615/http://www.easa.europa.eu/system/files/dfu/EASA-TCDS-E.047_Rolls--Royce_plc_RB211_Trent_800_series_engines-02-10102013.pdf/ |archive-date= 29 November 2016 |dead-url= yes |df= dmy-all }}
71. ^{{cite web |title= Trent 500 Type-Certificate Data Sheet |url= https://www.easa.europa.eu/system/files/dfu/EASA-TCDS-E.060_Rolls--Royce_plc_RB211_Trent_500_series_engines-01-26102007.pdf |publisher= EASA}}
72. ^{{cite journal | author = Federal Aviation Administration FAA| title = Type Certificate Data Sheet | date = 2007-06-06 | url = http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf/0/09b47c27a9cfb982862573080054f9ea/$FILE/E00075EN.pdf | accessdate = 2007-11-03 }}
73. ^{{cite web |url= https://www.easa.europa.eu/system/files/dfu/TCDS%20E.036_%20issue%2007_20161107_1.0.pdf |title= Type certificate data sheet |publisher= EASA |date= 11 July 2016}}
74. ^{{cite web |url= https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf |title= Type Certificate Data Sheet E.111 |date= 20 April 2016 |publisher= EASA |deadurl= yes |archiveurl= https://web.archive.org/web/20160725133110/https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf |archivedate= 25 July 2016 |df= dmy-all }}
75. ^{{cite web |url= https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/civil-aerospace-downloads/trent-7000-infographic.pdf |title= Trent 7000 infographic |publisher= Rolls-Royce Holdings |date= Nov 2016}}

1.{{note|1}}Engine interchangeability makes the 787 a more flexible asset to airlines, allowing them to change from one manufacturer's engine to the other's in light of any future engine developments which conform more closely to their operating profile. The cost of such a change would require a significant operating cost difference between the two engine types to make it economical. A difference that does not exist with the engines today.{{Citation needed|date=August 2010}}

2.{{note|2}}Singapore Airlines has 58 Trent 800 powered 777s and 5 Trent 500 powered A340-500s; it also has a further 19 Trent 700 powered A330-300s, 19 Trent 900 powered A380-800s and 20 Trent XWB powered A350 XWB-900s on order. [https://web.archive.org/web/20071019115445/http://www.rolls-royce.com/media/showPR.jsp?PR_ID=40508] Should it select the Trent 1000 for its order of 20 787-9s, it will become the first airline to operate 6 different versions of the Trent.

References

{{Reflist|33em}}

External links

{{Commons category}}
  • Rolls-Royce plc
    • Trent 500 series
    • Trent 700 series
    • Trent 800 series
    • Trent 900 series
    • Trent 1000 series
    • Trent XWB
    • [https://web.archive.org/web/20121109180440/http://www.rolls-royce.com/energy/energy_products/gas_turbines/trent_60/ Trent 60]
    • MT30
{{Rolls-Royce Trent series}}{{Rolls-Royce plc aeroengines}}

4 : High-bypass turbofan engines|Rolls-Royce aircraft gas turbine engines|Turbofan engines 1990–1999|Three-spool turbofan engines

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 21:56:33