词条 | Root test |
释义 |
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity where are the terms of the series, and states that the series converges absolutely if this quantity is less than one but diverges if it is greater than one. It is particularly useful in connection with power series. TestThe root test was developed first by Augustin-Louis Cauchy who published it in his textbook Cours d'analyse (1821).[1] Thus, it is sometimes known as the Cauchy root test or Cauchy's radical test. For a series the root test uses the number where "lim sup" denotes the limit superior, possibly ∞+. [2] Note that if converges then it equals C and may be used in the root test instead. The root test states that:
There are some series for which C = 1 and the series converges, e.g. , and there are others for which C = 1 and the series diverges, e.g. . Application to power seriesThis test can be used with a power series where the coefficients cn, and the center p are complex numbers and the argument z is a complex variable. The terms of this series would then be given by an = cn(z − p)n. One then applies the root test to the an as above. Note that sometimes a series like this is called a power series "around p", because the radius of convergence is the radius R of the largest interval or disc centred at p such that the series will converge for all points z strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately). A corollary of the root test applied to such a power series is that the radius of convergence is exactly taking care that we really mean ∞ if the denominator is 0. ProofThe proof of the convergence of a series Σan is an application of the comparison test. If for all n ≥ N (N some fixed natural number) we have then . Since the geometric series converges so does by the comparison test. Hence Σan converges absolutely. Note that implies that for almost all . If for infinitely many n, then an fails to converge to 0, hence the series is divergent. Proof of corollary: For a power series Σan = Σcn(z − p)n, we see by the above that the series converges if there exists an N such that for all n ≥ N we have equivalent to for all n ≥ N, which implies that in order for the series to converge we must have for all sufficiently large n. This is equivalent to saying so Now the only other place where convergence is possible is when (since points > 1 will diverge) and this will not change the radius of convergence since these are just the points lying on the boundary of the interval or disc, so See also
References1. ^{{citation|title=The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass|first=Umberto|last=Bottazzini|publisher=Springer-Verlag|year=1986|isbn=978-0-387-96302-0|pages=116–117}}. Translated from the Italian by Warren Van Egmond. * {{cite book2. ^Terrence Tichaona Dobbie (2017) | author= Knopp, Konrad | title= Infinite Sequences and Series | chapter = § 3.2 | publisher=Dover publications, Inc., New York | year=1956 | isbn = 0-486-60153-6}}
|author1=Whittaker, E. T. |author2=Watson, G. N. |lastauthoramp=yes | title= A Course in Modern Analysis | chapter = § 2.35 | edition=fourth | publisher=Cambridge University Press | year=1963 | isbn = 0-521-58807-3}}{{PlanetMath attribution|id=3934|title=Proof of Cauchy's root test}}Kryteria zbieżności szeregów#Kryterium Cauchy'ego 2 : Convergence tests|Articles containing proofs |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。