词条 | Immune checkpoint |
释义 |
Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. Inhibitory checkpoint molecules are targets for cancer immunotherapy due to their potential for use in multiple types of cancers. Currently approved checkpoint inhibitors block CTLA4 and PD-1 and PD-L1. For the related basic science discoveries, James P. Allison and Tasuku Honjo won the Tang Prize in Biopharmaceutical Science and the Nobel Prize in Physiology or Medicine in 2018.[1][2] Stimulatory checkpoint moleculesFour stimulatory checkpoint molecules are members of the tumor necrosis factor (TNF) receptor superfamily—CD27, CD40, OX40, GITR and CD137. Another two stimulatory checkpoint molecules belongs to the B7-CD28 superfamily—CD28 itself and ICOS.
Inhibitory checkpoint molecules
Immune checkpoint inhibitorsDrugs or drug candidates that inhibit/block the inhibitory checkpoint molecules are sometimes known as checkpoint inhibitors; this idea is often referred to as immune checkpoint blockade, or simply checkpoint blockade.[48][34] Checkpoint inhibitor drugs have seen growth in pharmaceutical research in cancer by companies including Bristol-Myers Squibb, Merck, Merck KGaA, Roche and AstraZeneca.[49] A new area of checkpoint inhibitor drugs is being pursued by Palleon Pharmaceuticals, who are working on inhibiting SIGLEC 7 and SIGLEC 9 as a new class of receptors for antibody therapeutics. References1. ^{{Cite web |url=https://web.archive.org/web/20171020051653/http://www.tang-prize.org/en/owner.php?cat=11&y=2 |title=2014 Tang Prize in Biopharmaceutical Science |access-date=2016-06-18 |archive-url= |archive-date=2016-06-20 |dead-url=no |df= }} 2. ^{{cite web | last=Devlin | first=Hannah | title=James P Allison and Tasuku Honjo win Nobel prize for medicine | website=the Guardian | date=2018-10-01 | url=https://www.theguardian.com/science/2018/oct/01/james-p-allison-and-tasuku-honjo-win-nobel-prize-for-medicine | access-date=2018-10-01}} 3. ^{{cite journal |author1=Hendriks J |author2=Gravestein LA |author3=Tesselaar K |author4=van Lier RA |author5=Schumacher TN |author6=Borst J. |title=CD27 is required for generation and long-term maintenance of T cell immunity |journal=Nat Immunol |volume=1 |issue=5 |pages=433–40 |date=November 1, 2000 |doi= 10.1038/80877 |pmid=11062504}} 4. ^{{cite journal |author=Agematsu K |title=Memory B cells and CD27 |journal=Histology and Histopathology |volume=15 |issue=2 |pages=573–6 |date=April 1, 2000 |doi= |pmid=10809378}} 5. ^{{cite journal |vauthors=Borst J, Hendriks J, Xiao Y |title=CD27 and CD70 in T cell and B cell activation |journal=Curr Opin Immunol |volume=17 |issue=3 |pages=275–81 |date=June 1, 2005 |doi= 10.1016/j.coi.2005.04.004 |pmid=15886117}} 6. ^{{cite journal |vauthors=Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EA, Xiao Y, Jacobs H, Borst J |title=The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity |journal=Immunity |volume=38 |issue=1 |pages=53–65 |date=January 24, 2013 |doi= 10.1016/j.immuni.2012.09.009 |pmid=23159439}} 7. ^{{cite web|title=CDX-1127 – Monoclonal Antibody Targeting CD27|url=http://www.celldex.com/pipeline/cdx-1127.php|publisher=Celldex Therapeutics}} 8. ^{{cite journal |vauthors=He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ, Marsh H, Keler T |title=Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice |journal=J Immunol |volume=191 |issue=8 |pages=4174–83 |date=October 15, 2013 |doi= 10.4049/jimmunol.1300409 |pmid=24026078}} 9. ^{{cite journal |vauthors=Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M, Burns C, Thorpe R, Stebbings R |title=Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells |journal=Br J Pharmacol |volume=161 |issue=3 |pages=512–526 |date=October 1, 2010 |doi= 10.1111/j.1476-5381.2010.00922.x |pmid=20880392 |pmc=2990151}} 10. ^{{cite journal |vauthors=O'Sullivan B, Thomas R |title=CD40 and dendritic cell function |journal=Crit Rev Immunol |volume=23 |issue=1 |pages=83–107 |date=January 1, 2003 |doi= 10.1615/critrevimmunol.v23.i12.50 |pmid=12906261}} 11. ^{{cite news|last1=Zimm|first1=Angela|title=Cancer ‘Miracle’ Patients Studied Anew for Disease Clues|url=https://www.bloomberg.com/news/articles/2014-04-11/cancer-miracle-patients-studied-anew-for-disease-clues|accessdate=25 June 2015|work=Bloomberg|date=April 12, 2014}} 12. ^{{cite journal |vauthors=Boyman O, Sprent J |title=The role of interleukin-2 during homeostasis and activation of the immune system |journal=Nat Rev Immunol |volume=12 |issue=3 |pages=180–190 |date=February 17, 2012 |doi= 10.1038/nri3156 |pmid=22343569}} 13. ^{{cite news|title=Nektar and MD Anderson Cancer Center Announce Phase 1/2 Clinical Research Collaboration for NKTR-214, a CD122-Biased Immuno-Stimulatory Cytokine|url=http://ir.nektar.com/releasedetail.cfm?ReleaseID=915967|accessdate=25 June 2015|work=Nektar Therapeutics|date=June 2, 2015}} 14. ^[https://immuno-oncologynews.com/2016/11/17/nektar-therapeutics-presents-clinical-data-from-ongoing-escalation-study-of-nktr-214-in-solid-tumors/ Immunotherapy, NKTR-214, Shows Activity Against Solid Tumors in Clinical Trial] 15. ^{{cite journal |vauthors=Mittler RS, Foell J, McCausland M, Strahotin S, Niu L, Bapat A, Hewes LB |title=Anti-CD137 antibodies in the treatment of autoimmune disease and cancer |journal=Immunol Res |volume=29 |issue=1 |pages=197–208 |date=June 1, 2004 |doi= 10.1385/ir:29:1-3:197 |pmid=15181282}} 16. ^{{cite news|title=Pieris Pharmaceuticals to present data on novel anti-CD137 and HER2 bispecific immuno-oncology program at UBS Global Healthcare Conference|url=http://www.pieris.com/news-and-events/press-releases/detail/500/pieris-pharmaceuticals-to-present-data-on-novel-anti-cd137|accessdate=5 June 2015|publisher=Pieris Pharmaceuticals|date=19 May 2015}} 17. ^{{cite journal |vauthors=Croft M, So T, Duan W, Soroosh P |title=The significance of OX40 and OX40L to T-cell biology and immune disease |journal=Immunol Rev |volume=229 |issue=1 |pages=173–91 |date=May 1, 2009 |doi= 10.1111/j.1600-065x.2009.00766.x |pmid=19426222 |pmc=2729757}} 18. ^{{cite journal |vauthors=Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD |title=Science gone translational: the OX40 agonist story. |journal=Immunol Rev |volume=244 |issue=1 |pages=218–31 |date=November 1, 2011 |doi= 10.1111/j.1600-065x.2011.01069.x |pmid=22017441 |pmc=3622727}} 19. ^{{cite journal |author1=Curti BD |author2=Kovacsovics-Bankowski M |author3=Morris N |author4=Walker E |author5=Chisholm L |author6=Floyd K |author7=Walker J |author8=Gonzalez I |author9=Meeuwsen T |author10=Fox BA |author11=Moudgil T |author12=Miller W |author13=Haley D |author14=Coffey T |author15=Fisher B |author16=Delanty-Miller L |author17=Rymarchyk N |author18=Kelly T |author19=Crocenzi T |author20=Bernstein E |author21=Sanborn R |author22=Urba WJ |author23=Weinberg AD. |title=OX40 is a potent immune-stimulating target in late-stage cancer patients |journal=Cancer Res |volume=73 |issue=24 |pages=7189–98 |date=December 15, 2013 |doi= 10.1158/0008-5472.can-12-4174 |pmid=24177180 |pmc=3922072}} 20. ^{{cite news|title=Q1 2015 Result|url=http://www.astrazeneca.com/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadername2=MDT-Type&blobheadervalue1=inline%3B+filename%3DDownload-press-release-amp-pipeline-update.pdf&blobheadervalue2=abinary%3B+charset%3DUTF-8&blobkey=id&blobtable=MungoBlobs&blobwhere=1285691535910&ssbinary=true|accessdate=5 June 2015|publisher=AstraZeneca|date=24 April 2015}} 21. ^{{cite journal |vauthors=Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, Ayroldi E, Riccardi C |title=GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. |journal=Eur J Immunol |volume=34 |issue=3 |pages=613–22 |date=March 1, 2004 |doi= 10.1002/eji.200324804 |pmid=14991590}} 22. ^{{cite journal |vauthors=Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C |title=GITR/GITRL: more than an effector T cell co-stimulatory system |journal=Eur J Immunol |volume=37 |issue=5 |pages=1165–9 |date=May 1, 2007 |doi= 10.1002/eji.200636933 |pmid=17407102}} 23. ^{{cite journal |vauthors=Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, Zhong H, Yang X, Houghton AN, Merghoub T, Wolchok JD |title=GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability |journal=Cancer Immunol Res |volume=1 |issue=5 |pages=320–31 |date=November 1, 2013 |doi= 10.1158/2326-6066.cir-13-0086 |pmid=24416730 |pmc=3885345}} 24. ^{{cite news|title=TG Therapeutics Enters Into a Global Collaboration With Checkpoint Therapeutics to Develop and Commercialize Novel Immuno-Oncology Targeted Antibodies|url=http://ir.tgtherapeutics.com/releasedetail.cfm?ReleaseID=899887|accessdate=5 June 2015|publisher=TG Therapeutics|date=4 March 2015}} 25. ^{{cite journal |vauthors=Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP, Coyle AJ, Kroczek RA, Hutloff A |title=ICOS controls the pool size of effector-memory and regulatory T cells |journal=J Immunol |volume=180 |issue=2 |pages=774–782 |date=January 15, 2008 |doi= 10.4049/jimmunol.180.2.774 |pmid=18178815}} 26. ^{{cite journal |vauthors=Leone RD, Lo YC, Powell JD |title=A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy |journal=Comput Struct Biotechnol J |volume=13 |issue= |pages=265–72 |date=April 8, 2015 |doi= 10.1016/j.csbj.2015.03.008 |pmid=25941561 |pmc=4415113}} 27. ^{{cite journal |vauthors=Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K, Chen L |title=B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production |journal=Nat Immunol |volume=2 |issue=3 |pages=269–74 |date=March 1, 2001 |doi= 10.1038/85339 |pmid=11224528}} 28. ^{{cite journal |vauthors=Leitner J, Klauser C, Pickl WF, Stöckl J, Majdic O, Bardet AF, Kreil DP, Dong C, Yamazaki T, Zlabinger G, Pfistershammer K, Steinberger P |title=B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction |journal=Eur J Immunol |volume=39 |issue=7 |pages=1754–64 |date=July 1, 2009 |doi= 10.1002/eji.200839028 |pmid=19544488 |pmc=2978551}} 29. ^{{cite news|title=MacroGenics Provides Update on Corporate Progress and First Quarter 2015 Financial Results|url=http://ir.macrogenics.com/releasedetail.cfm?ReleaseID=911389|accessdate=5 June 2015|publisher=MacroGenics|date=6 May 2015}} 30. ^{{cite journal |vauthors=Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, Duan W, Zhou X, Liang R, Tao M |title=B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer |journal=Oncotarget |volume=6 |issue=5 |pages=3452–61 |date=February 20, 2015 |doi= 10.18632/oncotarget.3097 |pmid=25609202 |pmc=4413666}} 31. ^{{cite journal |vauthors=Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R, Ra HJ, Danet-Desnoyers G, ((Powell DJ Jr)), Scholler N |title=Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses |journal=Cancer Res |volume=73 |issue=15 |pages=4820–9 |date=August 1, 2013 |doi= 10.1158/0008-5472.can-12-3457 |pmid=23722540 |pmc=3732560}} 32. ^{{cite journal |vauthors=Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE |title=BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination |journal=J Clin Invest |volume=120 |issue=1 |pages=157–67 |date=January 1, 2010 |doi= 10.1172/jci40070 |pmid=20038811 |pmc=2799219}} {{open access}} 33. ^{{cite journal |vauthors=Kolar P, Knieke K, Hegel JK, Quandt D, Burmester GR, Hoff H, Brunner-Weinzierl MC |title=CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice |journal=Arthritis Rheum |volume=60 |issue=1 |pages=123–32 |date=January 1, 2009 |doi= 10.1002/art.24181 |pmid=19116935}} 34. ^1 2 3 4 5 6 7 {{Cite journal|last=Syn|first=Nicholas L|last2=Teng|first2=Michele W L|last3=Mok|first3=Tony S K|last4=Soo|first4=Ross A|title=De-novo and acquired resistance to immune checkpoint targeting|url=http://linkinghub.elsevier.com/retrieve/pii/S1470204517306071|journal=The Lancet Oncology|language=en|volume=18|issue=12|pages=e731–e741|doi=10.1016/s1470-2045(17)30607-1|pmid=29208439|year=2017}} 35. ^{{cite journal |vauthors=Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ |title=Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer |journal=Cancer Immunol Immunother |volume=63 |issue=7 |pages=721–35 |date=July 1, 2014 |doi= 10.1007/s00262-014-1549-4 |pmid=24711084 |pmc=4384696}} 36. ^{{cite journal |author1=Huang CT |author2=Workman CJ |author3=Flies D |author4=Pan X |author5=Marson AL |author6=Zhou G |author7=Hipkiss EL |author8=Ravi S |author9=Kowalski J |author10=Levitsky HI |author11=Powell JD |author12=Pardoll DM |author13=Drake CG |author14=Vignali DA. |title=Role of LAG-3 in regulatory T cells |journal=Immunity |volume=21 |issue=4 |pages=:503–13 |date=October 1, 2004 |doi= 10.1016/j.immuni.2004.08.010 |pmid=15485628}} 37. ^{{cite journal |vauthors=Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG |title=LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems |journal=J Clin Invest |volume=117 |issue=11 |pages=3383–92 |date=November 1, 2007 |doi= 10.1172/jci31184 |pmid=17932562 |pmc=2000807}} 38. ^{{ClinicalTrialsGov|NCT01968109|Safety Study of Anti-LAG-3 With and Without Anti-PD-1 in the Treatment of Solid Tumors}} 39. ^{{cite journal |vauthors=Martner A, Aydin E, Hellstrand K |title=NOX2 in autoimmunity, tumor growth and metastasis |journal=J Pathol |volume=247 |issue=2 |pages=151–154 |date=October 1, 2018 |doi= 10.1002/path.5175 |pmid=30270440}} 40. ^{{cite journal |vauthors=Philips GK, Atkins M |title=Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies |journal=Int Immunol |volume=27 |issue=1 |pages=39–46 |date=January 1, 2015 |doi= 10.1093/intimm/dxu095 |pmid=25323844}} 41. ^{{cite journal |vauthors=Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, Zheng XX, Strom TB, Hafler DA, Kuchroo VK |title=TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines |journal=Eur J Immunol |volume=39 |issue=9 |pages=2492–501 |date=September 1, 2009 |doi= 10.1002/eji.200939274 |pmid=19676072 |pmc=2759376}} 42. ^{{cite book |vauthors=Zhu C, Anderson AC, Kuchroo VK |title=TIM-3 and its regulatory role in immune responses |journal=Curr Top Microbiol Immunol |volume=350 |issue= |pages=1–15 |date=August 11, 2010 |doi= 10.1007/82_2010_84 |pmid=20700701|series=Current Topics in Microbiology and Immunology |isbn=978-3-642-19544-0 }} 43. ^{{cite journal |vauthors=Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA, Fiser A, Almo S, Noelle RJ |title=VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses |journal=J Exp Med |volume=208 |issue=3 |pages=577–92 |date=March 14, 2011 |doi= 10.1084/jem.20100619 |pmid=21383057 |pmc=3058578}} 44. ^{{cite journal |vauthors=Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, Noelle R |title=VISTA is an immune checkpoint molecule for human T cells |journal=Cancer Res |volume=74 |issue=7 |pages=1924–32 |date=April 1, 2014 |doi= 10.1158/0008-5472.CAN-13-1504 |pmid=24691993 |pmc=3979527}} 45. ^{{Cite journal |last=Läubli |first=Heinz |last2=Zippelius |first2=Alfred |last3=Varki |first3=Ajit |last4=Speiser |first4=Daniel E. |last5=Stenner |first5=Frank |last6=Egli |first6=Adrian |last7=Syedbasha |first7=Mohammedyaseen |last8=Amos |first8=Christopher I. |last9=Han |first9=Younghun |date=2018-11-01 |title=Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells |url=https://www.jci.org/articles/view/120612 |journal=The Journal of Clinical Investigation |language=en |volume=128 |issue=11 |pages=4912–4923 |doi=10.1172/JCI120612 |pmid=30130255 |pmc=6205408 |issn=0021-9738}} 46. ^{{Cite journal |last=Varki |first=Ajit |last2=Paulson |first2=James C. |last3=Crocker |first3=Paul R. |title=Siglecs and their roles in the immune system |url=https://www.nature.com/articles/nri2056 |journal=Nature Reviews Immunology |language=en |volume=7 |issue=4 |pages=255–266 |doi=10.1038/nri2056 |pmid=17380156 |issn=1474-1741 |via= |year=2007}} 47. ^{{Cite journal |last=Paulson |first=James C. |last2=Crocker |first2=Paul R. |last3=Macauley |first3=Matthew S. |title=Siglec-mediated regulation of immune cell function in disease |url=https://www.nature.com/articles/nri3737 |journal=Nature Reviews Immunology |language=en |volume=14 |issue=10 |pages=653–666 |doi=10.1038/nri3737 |pmid=25234143 |pmc=4191907 |issn=1474-1741 |year=2014}} 48. ^{{cite journal|last1=Pardoll|first1=Drew M.|title=The blockade of immune checkpoints in cancer immunotherapy|journal=Nature Reviews Cancer|date=22 March 2012|volume=12|issue=4|pages=252–264|doi=10.1038/nrc3239|pmid=22437870|pmc=4856023}} 49. ^{{Cite journal |url=https://www.economist.com/news/business/21721676-astrazenecas-imfinzi-costs-180000-years-treatment-cancer-drugs-are-getting-better-and |title=Cancer drugs are getting better and dearer |journal=The Economist |access-date=2017-05-19 |date=2017-05-04}} 1 : Immune system |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。