释义 |
- References
{{no footnotes|date=November 2018}}In mathematics, the Jacobi group, introduced by {{harvtxt|Eichler|Zagier|1985}}, is the semidirect product of the symplectic group Sp2n(R) and the Heisenberg group R1+2n. The concept is named after Carl Gustav Jacob Jacobi. Automorphic forms on the Jacobi group are called Jacobi forms.References- {{Citation | last1=Berndt | first1=Rolf | last2=Schmidt | first2=Ralf | title=Elements of the representation theory of the Jacobi group | url=https://books.google.com/books?id=mwGXxvqdKjQC | publisher=Birkhäuser Verlag | series=Progress in Mathematics | isbn=978-3-7643-5922-5 | mr=1634977 | year=1998 | volume=163}}
- {{Citation | last1=Eichler | first1=Martin | last2=Zagier | first2=Don | title=The theory of Jacobi forms | publisher=Birkhäuser Boston | location=Boston, MA | series=Progress in Mathematics | isbn=978-0-8176-3180-2 | mr=781735 | year=1985 | volume=55}}
{{DEFAULTSORT:Jacobi Group}}{{abstract-algebra-stub}} 2 : Modular forms|Lie groups |