词条 | Kervaire semi-characteristic |
释义 |
In mathematics, the Kervaire semi-characteristic, introduced by {{harvs|txt|last=Kervaire|authorlink=Michel Kervaire|year=1956}}, is an invariant of manifolds M of dimension 4n+1 taking values in Z/2Z, given by k(M) ={{harvtxt|Atiyah|Singer|1971}} showed that it is given by the index of a skew-adjoint elliptic operator. Assuming M is oriented, the Atiyah vanishing theorem states that if M has two linearly independent vector fields, then k(M) = 0.[1] References
Notes1. ^{{cite book|last=Weiping|first=Zhang|title=Lectures On Chern-weil Theory And Witten Deformations|url=https://books.google.com/books?id=8OfUCgAAQBAJ&pg=PA105|accessdate=6 July 2018|date=2001-09-21|publisher=World Scientific|isbn=9789814490627|page=105}} 1 : Differential topology |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。