请输入您要查询的百科知识:

 

词条 Klein configuration
释义

  1. References

In geometry, the Klein configuration, studied by {{harvs|txt|authorlink=Felix Klein|last=Klein|year=1870}}, is a geometric configuration related to Kummer surfaces that consists of 60 points and 60 planes, with each point lying on 15 planes and each plane passing through 15 points. The configurations uses 15 pairs of lines, 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 and their reverses. The 60 points are three concurrent lines forming an odd permutation, shown below. The sixty planes are 3 coplanar lines forming even permutations, obtained by reversing the last two digits in the points. For any point or plane there are 15 members in the other set containing those 3 lines. [Hudson, 1905]

12-34-65 12-43-56 21-34-56 21-43-65 12-35-46 12-53-64
21-35-64 21-53-46 12-36-54 12-63-45 21-36-45 21-63-54
13-24-56 13-42-65 31-24-65 31-42-56 13-25-64 13-52-46
31-25-46 31-52-64 13-26-45 13-62-54 31-26-54 31-62-45
14-23-65 14-32-56 41-23-56 41-32-65 14-25-36 14-52-63
41-25-63 41-52-36 14-26-53 14-62-35 41-26-35 41-62-53
15-23-46 15-32-64 51-23-64 51-32-46 15-24-63 15-42-36
51-24-36 51-42-63 15-26-34 15-62-43 51-26-43 51-62-34
16-23-54 16-32-45 61-23-45 61-32-54 16-24-35 16-42-53
61-24-53 61-42-35 16-25-43 16-52-34 61-25-34 61-52-43

References

  • {{Citation | authorlink=R. W. H. T. Hudson | last1=Hudson | first1=R. W. H. T. | title=Kummer's quartic surface | publisher=Cambridge University Press | series=Cambridge Mathematical Library | isbn=978-0-521-39790-2 |mr=1097176 | year=1990 | contribution = §25. Klein's 6015 configuration|contribution-url=https://books.google.com/books?id=UqUFAQAAIAAJ&pg=PA42|pages=42–44|origyear=1905}}
  • {{Citation | last1=Klein | first1=Felix |authorlink=Felix Klein| title=Zur Theorie der Liniencomplexe des ersten und zweiten Grades | publisher=Springer Berlin / Heidelberg | year=1870 | journal=Mathematische Annalen | issn=0025-5831 | volume=2 | pages=198–226 | doi=10.1007/BF01444020}}

2 : Configurations|Algebraic geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 21:24:51