词条 | Kummer's theorem |
释义 |
In mathematics, Kummer's theorem for binomial coefficients gives the p-adic valuation of a binomial coefficient, i.e., the exponent of the highest power of a prime number p dividing this binomial coefficient. The theorem is named after Ernst Kummer, who proved it in the paper {{harvtxt|Kummer|1852}}. StatementKummer's theorem states that for given integers n ≥ m ≥ 0 and a prime number p, the p-adic valuation is equal to the number of carries when m is added to n − m in base p. It can be proved by writing as and using Legendre's formula. Multinomial coefficient generalizationKummer's theorem may be generalized to multinomial coefficients as follows: Write the base- expansion of an integer as , and define to be the sum of the base- digits. Then See also
References
|last=Kummer |first=Ernst |title=Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen |journal=Journal für die reine und angewandte Mathematik |year=1852 |volume=44 |pages=93–146 |doi=10.1515/crll.1852.44.93}}
1 : Theorems in number theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。