请输入您要查询的百科知识:

 

词条 Lieb conjecture
释义

  1. References

  2. External links

In quantum information theory, the Lieb conjecture is a theorem concerning the Wehrl entropy of quantum systems for which the classical phase space is a sphere. It states that no state of such a system has a lower Wehrl entropy than the SU(2) coherent states.

The analogous property for quantum systems for which the classical phase space is a plane was conjectured by Alfred Wehrl in 1978 and proven soon afterwards by Elliott H. Lieb,[1] who at the same time extended it to the SU(2) case. The conjecture was only proven in 2012, by Lieb and Jan Philip Solovej.[2]

References

1. ^{{cite journal|last1=Lieb|first1=Elliott H.|title=Proof of an entropy conjecture of Wehrl|journal=Communications in Mathematical Physics|date=August 1978|volume=62|issue=1|pages=35–41|doi=10.1007/BF01940328|bibcode=1978CMaPh..62...35L}}
2. ^{{cite journal|last1=Lieb|first1=Elliott H.|last2=Solovej|first2=Jan Philip|title=Proof of an entropy conjecture for Bloch coherent spin states and its generalizations|journal=Acta Mathematica|date=17 May 2014|volume=212|issue=2|pages=379–398|doi=10.1007/s11511-014-0113-6|arxiv=1208.3632}}

External links

  • [https://video.ias.edu/members/lieb Video of a lecture by Lieb discussing the conjecture and outlining its proof.]
{{quantum-stub}}

2 : Quantum mechanical entropy|Conjectures that have been proved

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 1:09:52