释义 |
- ARM cores Designed by ARM Designed by third parties
- ARM core timeline
- See also
- References
- Further reading
{{Redirect|ARM8|the ARMv8-A architecture|ARMv8-A|the ARMv8-R architecture|ARMv8-R}}{{Use dmy dates|date=February 2015}}This is a list of microarchitectures based on the ARM family of instruction sets designed by ARM Holdings and 3rd parties, sorted by version of the ARM instruction set, release and name. ARM provides a summary of the numerous vendors who implement ARM cores in their design.[1] Keil also provides a somewhat newer summary of vendors of ARM based processors.[2] ARM further provides a chart[3] displaying an overview of the ARM processor lineup with performance and functionality versus capabilities for the more recent ARM core families. ARM coresDesigned by ARM ARM family | ARM architecture | ARM core | Feature | Cache (I / D), MMU | Typical MIPS @ MHz | Reference |
---|
ARM1 | ARMv1 | ARM1 | First implementation | None |
---|
ARM2 | ARMv2 | ARM2 | ARMv2 added the MUL (multiply) instruction | None | 4 MIPS @ 8 MHz 0.33 DMIPS/MHz |
---|
ARMv2a | ARM250 | Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructions | None, MEMC1a | 7 MIPS @ 12 MHz | ARM3 | ARMv2a | ARM3 | First integrated memory cache | 4 KB unified | 12 MIPS @ 25 MHz 0.50 DMIPS/MHz |
---|
ARM6 | ARMv3 | ARM60 | ARMv3 first to support 32-bit memory address space (previously 26-bit). ARMv3M first added long multiply instructions (32x32=64). | None | 10 MIPS @ 12 MHz |
---|
ARM600 | As ARM60, cache and coprocessor bus (for FPA10 floating-point unit) | 4 KB unified | 28 MIPS @ 33 MHz | ARM610 | As ARM60, cache, no coprocessor bus | 4 KB unified | 17 MIPS @ 20 MHz 0.65 DMIPS/MHz | [4] | ARM7 | ARMv3 | ARM700 | 8 KB unified | 40 MHz |
---|
ARM710 | As ARM700, no coprocessor bus | 8 KB unified | 40 MHz | [5] | ARM710a | As ARM710 | 8 KB unified | 40 MHz 0.68 DMIPS/MHz | ARM7T | ARMv4T | ARM7TDMI(-S) | 3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM 26-bit addressing | None | 15 MIPS @ 16.8 MHz 63 DMIPS @ 70 MHz |
---|
ARM710T | As ARM7TDMI, cache | 8 KB unified, MMU | 36 MIPS @ 40 MHz | ARM720T | As ARM7TDMI, cache | 8 KB unified, MMU with FCSE (Fast Context Switch Extension) | 60 MIPS @ 59.8 MHz | ARM740T | As ARM7TDMI, cache | MPU | ARM7EJ | ARMv5TEJ | ARM7EJ-S | 5-stage pipeline, Thumb, Jazelle DBX, enhanced DSP instructions | None |
---|
ARM8 | ARMv4 | ARM810 | 5-stage pipeline, static branch prediction, double-bandwidth memory | 8 KB unified, MMU | 84 MIPS @ 72 MHz 1.16 DMIPS/MHz | [6][7] |
---|
ARM9T | ARMv4T | ARM9TDMI | 5-stage pipeline, Thumb | None |
---|
ARM920T | As ARM9TDMI, cache | 16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension) | 200 MIPS @ 180 MHz | [8] | ARM922T | As ARM9TDMI, caches | 8 KB / 8 KB, MMU | ARM940T | As ARM9TDMI, caches | 4 KB / 4 KB, MPU | ARM9E | ARMv5TE | ARM946E-S | Thumb, enhanced DSP instructions, caches | Variable, tightly coupled memories, MPU |
---|
ARM966E-S | Thumb, enhanced DSP instructions | No cache, TCMs | ARM968E-S | As ARM966E-S | No cache, TCMs | ARMv5TEJ | ARM926EJ-S | Thumb, Jazelle DBX, enhanced DSP instructions | Variable, TCMs, MMU | 220 MIPS @ 200 MHz | ARMv5TE | ARM996HS | Clockless processor, as ARM966E-S | No caches, TCMs, MPU | ARM10E | ARMv5TE | ARM1020E | 6-stage pipeline, Thumb, enhanced DSP instructions, (VFP) | 32 KB / 32 KB, MMU |
---|
ARM1022E | As ARM1020E | 16 KB / 16 KB, MMU | ARMv5TEJ | ARM1026EJ-S | Thumb, Jazelle DBX, enhanced DSP instructions, (VFP) | Variable, MMU or MPU | ARM11 | ARMv6 | ARM1136J(F)-S | 8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), enhanced DSP instructions, unaligned memory access | Variable, MMU | 740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz | [9] |
---|
ARMv6T2 | ARM1156T2(F)-S | 9-stage pipeline, SIMD, Thumb-2, (VFP), enhanced DSP instructions | Variable, MPU | [10] | ARMv6Z | ARM1176JZ(F)-S | As ARM1136EJ(F)-S | Variable, MMU + TrustZone | 965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors | [11] | ARMv6K | ARM11MPCore | As ARM1136EJ(F)-S, 1–4 core SMP | Variable, MMU | SecurCore | ARMv6-M | SC000 | 0.9 DMIPS/MHz |
---|
ARMv4T | SC100 | ARMv7-M | SC300 | 1.25 DMIPS/MHz | Cortex-M | ARMv6-M | Cortex-M0[12] | Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, no MPU | 0.84 DMIPS/MHz |
---|
Cortex-M0+[14] | Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 0.93 DMIPS/MHz | Cortex-M1[15] | Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memory | Optional cache, 0–1024 KB I-TCM, 0–1024 KB D-TCM, no MPU | 136 DMIPS @ 170 MHz,[16] (0.8 DMIPS/MHz FPGA-dependent)[17] | ARMv7-M | Cortex-M3[18] | Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz | ARMv7E-M | Cortex-M4[19] | Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv4-SP single-precision FPU, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz (1.27 w/FPU) | Cortex-M7[20] | Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv5 single and double precision FPU, hardware multiply and divide instructions | 0−64 KB I-cache, 0−64 KB D-cache, 0–16 MB I-TCM, 0–16 MB D-TCM (all these w/optional ECC), optional MPU with 8 or 16 regions | 2.14 DMIPS/MHz | Cortex-R | ARMv7-R | Cortex-R4[21] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstep with fault logic | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 8/12 regions | 1.67 DMIPS/MHz[22] |
---|
Cortex-R5[23] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[24] | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 12/16 regions | 1.67 DMIPS/MHz[22] | Cortex-R7[25] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[24] | 0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt. MPU with 16 regions | 2.50 DMIPS/MHz[22] | Cortex-R8[26] | TBD | TBD | 2.50 DMIPS/MHz[22] | ARMv8-R | Cortex-R52[27] | TBD | TBD | 2.16 DMIPS/MHz[28] | Cortex-A (32-bit) | ARMv7-A | Cortex-A5[29] | Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 4−64 KB / 4−64 KB L1, MMU + TrustZone | 1.57 DMIPS/MHz per core |
---|
Cortex-A7[30] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, architecture and feature set are identical to A15, 8–10 stage pipeline, low-power design[31] | 8−64 KB / 8−64 KB L1, 0–1 MB L2, MMU + TrustZone | 1.9 DMIPS/MHz per core | Cortex-A8[32] | Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalar pipeline | 16–32 KB / 16–32 KB L1, 0–1 MB L2 opt. ECC, MMU + TrustZone | Up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) | Cortex-A9[33] | Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 16–64 KB / 16–64 KB L1, 0–8 MB L2 opt. parity, MMU + TrustZone | 2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC 40G (dual-core) | Cortex-A12[34] | Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 32−64 KB | 3.0 DMIPS/MHz per core | Cortex-A15[35] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[31] | 32 KB w/parity / 32 KB w/ECC L1, 0–4 MB L2, L2 has ECC, MMU + TrustZone | At least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[36] | Cortex-A17[37] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP | 32 KB L1, 256 KB–8 MB L2 w/optional ECC | 2.8 DMIPS/MHz | ARMv8-A | Cortex-A32[38] | Application profile, AArch32, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline | 8–64 KB w/optional parity / 8−64 KB w/optional ECC L1 per core, 128 KB–1 MB L2 w/optional ECC shared | Cortex-A (64-bit) | ARMv8-A | Cortex-A35[39] | Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline | 8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–1 MB L2 shared, 40-bit physical addresses | 1.78 DMIPS/MHz |
---|
Cortex-A53[40] | Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline | 8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–2 MB L2 shared, 40-bit physical addresses | 2.3 DMIPS/MHz | Cortex-A57[41] | Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-way superscalar, deeply out-of-order pipeline | 48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses | 4.1 - 4.5 DMIPS/MHz[42][43] | Cortex-A72[44] | Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-way superscalar, deeply out-of-order pipeline | 48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses | 4.7 DMIPS/MHz | Cortex-A73[45] | Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-way superscalar, deeply out-of-order pipeline | 64 KB / 32−64 KB L1 per core, 256 KB–8 MB L2 shared w/ optional ECC, 44-bit physical addresses | 4.8 DMIPS/MHz[46] | ARMv8.2-A | Cortex-A55[47] | Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, triple issue, in-order pipeline[48] | 64 / 64 kB L1, 256 kB L2 per core, 4 MB L3 shared | Cortex-A75[49] | Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-way superscalar, deeply out-of-order pipeline[50] | 64 / 64 kB L1, 512 kB L2 per core, 4 MB L3 shared | Cortex-A76[51] | Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-way superscalar, 8-way issue, deeply out-of-order pipeline[52] | 64 / 64 kB L1, 256−512 kB L2 per core, 512 kB−4 MB L3 shared | ARM family | ARM architecture | ARM core | Feature | Cache (I / D), MMU | Typical MIPS @ MHz | Reference |
---|
As Dhrystone is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads{{snd}}use with caution. Designed by third partiesThese cores implement the ARM instruction set, and were developed independently by companies with an architectural license from ARM. Core Family | Instruction set | Microarchitecture | Feature | Cache (I / D), MMU | Typical MIPS @ MHz |
---|
StrongARM (Digital) | ARMv4 | SA-110 | 5-stage pipeline | 16 KB / 16 KB, MMU | 100–233 MHz 1.0 DMIPS/MHz |
---|
SA-1100 | derivative of the SA-110 | 16 KB / 8 KB, MMU | Faraday[53] (Faraday Technology) | ARMv4 | FA510 | 6-stage pipeline | Up to 32 KB / 32 KB cache, MPU | 1.26 DMIPS/MHz 100–200 MHz |
---|
FA526 | Up to 32 KB / 32 KB cache, MMU | 1.26 MIPS/MHz 166–300 MHz | FA626 | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.35 DMIPS/MHz 500 MHz | ARMv5TE | FA606TE | 5-stage pipeline | No cache, no MMU | 1.22 DMIPS/MHz 200 MHz | FA626TE | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.43 MIPS/MHz 800 MHz | FMP626TE | 8-stage pipeline, SMP | 1.43 MIPS/MHz 500 MHz | FA726TE | 13 stage pipeline, dual issue | 2.4 DMIPS/MHz 1000 MHz | XScale (Intel / Marvell) | ARMv5TE | XScale | 7-stage pipeline, Thumb, enhanced DSP instructions | 32 KB / 32 KB, MMU | 133–400 MHz |
---|
Bulverde | Wireless MMX, wireless SpeedStep added | 32 KB / 32 KB, MMU | 312–624 MHz | Monahans[54] | Wireless MMX2 added | 32 KB / 32 KB L1, optional L2 cache up to 512 KB, MMU | Up to 1.25 GHz | Sheeva (Marvell) | ARMv5 | Feroceon | 5–8 stage pipeline, single-issue | 16 KB / 16 KB, MMU | 600–2000 MHz |
---|
Jolteon | 5–8 stage pipeline, dual-issue | 32 KB / 32 KB, MMU | PJ1 (Mohawk) | 5–8 stage pipeline, single-issue, Wireless MMX2 | 32 KB / 32 KB, MMU | 1.46 DMIPS/MHz 1.06 GHz | ARMv6 / ARMv7-A | PJ4 | 6–9 stage pipeline, dual-issue, Wireless MMX2, SMP | 32 KB / 32 KB, MMU | 2.41 DMIPS/MHz 1.6 GHz | Snapdragon (Qualcomm) | ARMv7-A | Scorpion[55] | 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide) | 256 KB L2 per core | 2.1 DMIPS/MHz per core |
---|
Krait[55] | 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide) | 4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core | 3.3 DMIPS/MHz per core | ARMv8-A | Kryo[56] | 4 cores. | ? | Up to 2.2 GHz (6.3 DMIPS/MHz) | Ax (Apple) | ARMv7-A | Swift[57] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON | L1: 32 KB / 32 KB, L2: 1 MB | 3.5 DMIPS/MHz per core |
---|
ARMv8-A | Cyclone[58] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 1 MB, L3: 4 MB | 1.3–1.4 GHz | ARMv8-A | Typhoon[58][59] | 2 or 3 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 1 or 2 MB, L3: 4 MB | 1.4−1.5 GHz | ARMv8-A | Twister[60] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 2 MB, L3: 4 MB or 0 MB | 1.85 or 2.26 GHz | ARMv8-A | Hurricane[61] | 2 or 3 cores. AArch64, 6-decode, 6-issue, 9-wide, superscalar, out-of-order | L1: 64 KB / 64 KB, L2: 3 or 8 MB, L3: 4 or 0 MB | 2.34 or 2.38 GHz | ARMv8-A | Monsoon[62] | 2 cores. AArch64, 7-decode, 6-issue, 10-wide, superscalar, out-of-order | L1: 64 KB / 64 KB, L2: 8MB, L3: none | 2.39 GHz | ARMv8.3-A | Vortex[63] | 2 or 4 cores. AArch64, 7-decode, 6-issue, 10-wide, superscalar, out-of-order | L1: 128 KB / 128 KB, L2: 8MB, L3: None | 2.5 GHz | X-Gene (Applied Micro) | ARMv8-A | X-Gene | 64-bit, quad issue, SMP, 64 cores[64] | Cache, MMU, virtualization | 3 GHz (4.2 DMIPS/MHz per core) |
---|
Denver (Nvidia) | ARMv8-A | Denver[65][66] | 2 cores. AArch64, 7-wide superscalar, in-order, dynamic code optimization, 128 MB optimization cache, Denver1: 28nm, Denver2:16nm | 128 KB I-cache / 64 KB D-cache | Up to 2.5 GHz |
---|
Carmel (Nvidia) | ARMv8(t.b.d.) | Carmel[67][68] | 2 cores. AArch64, 10-wide superscalar, in-order, dynamic code optimization, ? MB optimization cache, functional safety, dual execution, parity & ECC | ? KB I-cache / ? KB D-cache | Up to ? GHz |
---|
ThunderX (Cavium) | ARMv8-A | ThunderX | 64-bit, with two models with 8–16 or 24–48 cores (×2 w/two chips) | ? | Up to 2.2 GHz |
---|
K12 (AMD) | ARMv8-A | K12[69] | ? | ? | ? |
---|
Exynos (Samsung) | ARMv8-A | M1/M2 ("Mongoose")[70] | 4 cores. AArch64, 4-wide, quad-issue, superscalar, out-of-order | 64 KB I-cache / 32 KB D-cache, L2: 16-way shared 2 MB | 5.1 DMIPS/MHz (2.6 GHz) |
---|
ARMv8-A | M3 ("Meerkat")[71] | 4 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, out-of-order | 64 KB I-cache / 32 KB D-cache, L2: 8-way private 512 KB, L3: 16-way shared 4 MB | ? | |
ARM core timelineThe following table lists each core by the year it was announced.[72][73] Cores before ARM7 are not included. >Year | Classic cores | Cortex cores |
---|
ARM7 | ARM8 | ARM9 | ARM10 | ARM11 | Microcontroller | Real-time | Application (32-bit) | Application (64-bit) |
---|
1993 | ARM700 |
---|
1994 | ARM710 ARM7DI ARM7TDMI |
---|
1995 | ARM710a |
---|
1996 | ARM810 |
---|
1997 | ARM710T ARM720T ARM740T |
---|
1998 | ARM9TDMI ARM940T |
---|
1999 | ARM9E-S ARM966E-S |
---|
2000 | ARM920T ARM922T ARM946E-S | ARM1020T |
---|
2001 | ARM7TDMI-S ARM7EJ-S | ARM9EJ-S ARM926EJ-S | ARM1020E ARM1022E |
---|
2002 | ARM1026EJ-S | ARM1136J(F)-S |
---|
2003 | ARM968E-S | ARM1156T2(F)-S ARM1176JZ(F)-S |
---|
2004 | Cortex-M3 |
---|
2005 | ARM11MPCore | Cortex-A8 |
---|
2006 | ARM996HS |
---|
2007 | Cortex-M1 | Cortex-A9 |
---|
2008 |
---|
2009 | Cortex-M0 | Cortex-A5 |
---|
2010 | Cortex-M4(F) | Cortex-A15 |
---|
2011 | Cortex-R4 Cortex-R5 Cortex-R7 | Cortex-A7 |
---|
2012 | Cortex-M0+ | Cortex-A53 Cortex-A57 |
---|
2013 | Cortex-A12 |
---|
2014 | Cortex-M7(F) | Cortex-A17 |
---|
2015 | Cortex-A35 Cortex-A72 |
---|
2016 | Cortex-M23 Cortex-M33(F) | Cortex-R8 Cortex-R52 | Cortex-A32 | Cortex-A73 |
---|
2017 | Cortex-A55 Cortex-A75 |
---|
2018 | Cortex-M35P | Cortex-A76 |
---|
See also{{Portal|Computer science|Electronics}}- Comparison of ARMv7-A cores
- Comparison of ARMv8-A cores
- List of applications of ARM cores
- ARM architecture
References1. ^{{Cite web | url = http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/6745/0141_5linecard.pdf | title = ARM Powered Standard Products | format = PDF | year = 2005 | accessdate = 23 December 2017 }} 2. ^{{Cite web | author=ARM Ltd and ARM Germany GmbH |url=http://www.keil.com/dd/parms/arm.htm |title= Device Database |publisher= Keil |date= |accessdate=6 January 2011}} 3. ^{{Cite web|url=http://www.arm.com/products/processors/ |title=Processors |publisher=ARM |year= 2011 |accessdate=6 January 2011}} 4. ^{{cite web |title=ARM610 Datasheet |url=http://bitsavers.org/pdf/acorn/ARM_DDI_0004D_ARM610_Data_Sheet_Aug93.pdf |date=August 1993 |website=ARM Holdings |accessdate=January 29, 2019}} 5. ^{{cite web |title=ARM710 Datasheet |url=http://bitsavers.org/pdf/acorn/ARM_DDI_0024C_ARM710_Data_Sheet_Jul94.pdf |date=July 1994 |website=ARM Holdings |accessdate=January 29, 2019}} 6. ^{{cite web | url = https://www.hotchips.org/wp-content/uploads/hc_archives/hc08/2_Mon/HC8.S4/HC8.4.1.pdf | format = PDF | title = ARM810 – Dancing to the Beat of a Different Drum | author = ARM Holdings | publisher = Hot Chips | date = 7 August 1996 | accessdate = 14 November 2018 }} 7. ^{{cite news | url=http://www.eetimes.com/document.asp?doc_id=1208831 | title=VLSI Technology Now Shipping ARM810 | work=EE Times | date=26 August 1996 | accessdate=21 September 2013}} 8. ^Register 13, FCSE PID register ARM920T Technical Reference Manual 9. ^{{Cite web|url=http://www.arm.com/products/CPUs/ARM1136JF-S.html |title=ARM1136J(F)-S – ARM Processor |publisher=Arm.com |date= |accessdate=18 April 2009 |archiveurl=https://web.archive.org/web/20090321200633/http://www.arm.com/products/CPUs/ARM1136JF-S.html |archivedate=21 March 2009}} 10. ^{{cite web|url=https://www.arm.com/products/processors/classic/arm11/arm1156.php|title=ARM1156 Processor|website=Arm Holdings|archive-url=https://web.archive.org/web/20100213205149/https://www.arm.com/products/processors/classic/arm11/arm1156.php|archive-date=13 February 2010}} 11. ^{{Cite web|url = http://www.arm.com/products/processors/classic/arm11/ |title=ARM11 Processor Family |publisher= ARM |date= |accessdate=12 December 2010}} 12. ^Cortex-M0 Specification Summary; ARM Holdings. 13. ^1 2 {{cite web|url=http://archive.electronicdesign.com/files/29/20719/fig_01.gif|title=Cortex-M0/M0+/M1 Instruction set; ARM Holding.|archive-url=https://archive.today/20130418234149/http://archive.electronicdesign.com/files/29/20719/fig_01.gif|archive-date=18 April 2013}} 14. ^{{cite web|url=http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php|title=Cortex-M0+ Specification Summary|website=Arm Holdings}} 15. ^Cortex-M1 Specification Summary; ARM Holdings. 16. ^{{cite press|url=http://www.arm.com/news/17017.html |title=ARM Extends Cortex Family with First Processor Optimized for FPGA |publisher=ARM Holdings |date=19 March 2007 |accessdate=11 April 2007}} 17. ^{{cite web|url=http://www.arm.com/products/CPUs/ARM_Cortex-M1.html |title=ARM Cortex-M1 |publisher=ARM product website |accessdate=11 April 2007}} 18. ^Cortex-M3 Specification Summary; ARM Holdings. 19. ^Cortex-M4 Specification Summary; ARM Holdings. 20. ^Cortex-M7 Specification Summary; ARM Holdings. 21. ^Cortex-R4 Specification Summary; ARM Holdings. 22. ^1 2 3 {{Cite web|url=https://developer.arm.com/products/processors/cortex-r|title=Cortex-R – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2018-03-29}} 23. ^Cortex-R5 Specification Summary; ARM Holdings. 24. ^1 Cortex-R5 & Cortex-R7 Press Release; ARM Holdings; 31 January 2011. 25. ^Cortex-R7 Specification Summary; ARM Holdings. 26. ^Cortex-R8 Specification Summary; ARM Holdings. 27. ^{{Cite web|url=https://developer.arm.com/products/processors/cortex-r/cortex-r52|title=Cortex-R52 – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2018-10-26}} 28. ^{{Cite web|url=https://developer.arm.com/products/processors/cortex-r|title=Cortex-R – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2018-10-26}} 29. ^Cortex-A5 Specification Summary; ARM Holdings. 30. ^Cortex-A7 Specification Summary; ARM Holdings. 31. ^1 {{cite news|url=https://www.theregister.co.uk/2011/10/20/details_on_big_little_processing/ |title=Deep inside ARM's new Intel killer |publisher=The Register |date=20 October 2011}} 32. ^Cortex-A8 Specification Summary; ARM Holdings. 33. ^Cortex-A9 Specification Summary; ARM Holdings. 34. ^Cortex-A12 Summary; ARM Holdings. 35. ^Cortex-A15 Specification Summary; ARM Holdings. 36. ^Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9 | ITProPortal.com 37. ^Cortex-A17 Specification Summary; ARM Holdings. 38. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a/cortex-a32-processor.php | title=Cortex-A32 Processor | publisher=ARM Holdings | accessdate=18 May 2016}} 39. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a/cortex-a35-processor.php | title=Cortex-A35 Processor | publisher=ARM Holdings | accessdate=18 May 2016}} 40. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a50/cortex-a53-processor.php | title=Cortex-A53 Processor | publisher=ARM Holdings | accessdate=13 October 2012}} 41. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a50/cortex-a57-processor.php | title=Cortex-A57 Processor | publisher=ARM Holdings | accessdate=13 October 2012}} 42. ^{{cite web | url=http://www.bitkistl.com/2015/03/cortex-ax-vs-performnace.html | title=Cortex-Ax vs performance | accessdate=5 May 2017}} 43. ^{{cite web | url=http://www.cnx-software.com/2015/04/09/relative-performance-of-arm-cortex-a-32-bit-and-64-bit-cores | title=Relative Performance of ARM Cortex-A 32-bit and 64-bit Cores | accessdate=5 May 2017}} 44. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a/cortex-a72-processor.php | title=Cortex-A72 Processor | publisher=ARM Holdings | accessdate=3 February 2015}} 45. ^{{cite web | url=http://www.arm.com/products/processors/cortex-a/cortex-a73-processor.php | title=Cortex-A73 Processor | publisher=ARM Holdings | accessdate=2 June 2016}} 46. ^{{cite web | url=http://www.bitkistl.com/2015/03/cortex-ax-vs-performnace.html | title=Cortex-Ax vs performance | accessdate=5 May 2017}} 47. ^{{Cite web|url=https://developer.arm.com/products/processors/cortex-a/cortex-a55|title=Cortex-A55 – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2017-11-27}} 48. ^{{Cite web|url=https://nl.hardware.info/reviews/7394/4/preview-arms-nieuwe-cpu--en-gpu-architecturen-cortex-a55-efficientie|title=Hardware.Info Nederland|website=nl.hardware.info|language=nl|access-date=2017-11-27}} 49. ^{{Cite web|url=https://developer.arm.com/products/processors/cortex-a/cortex-a75|title=Cortex-A75 – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2017-11-27}} 50. ^{{Cite web|url=https://nl.hardware.info/reviews/7394/5/preview-arms-nieuwe-cpu--en-gpu-architecturen-cortex-a75-high-performancen|title=Hardware.Info Nederland|website=nl.hardware.info|language=nl|access-date=2017-11-27}} 51. ^{{Cite web|url=https://developer.arm.com/products/processors/cortex-a/cortex-a76|title=Cortex-A76 – Arm Developer|publisher=Arm Ltd.|website=ARM Developer|language=en|access-date=2018-11-15}} 52. ^{{Cite web|url=https://anandtech.com/show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse/2|title=Arm's Cortex-A76 CPU Unveiled: Taking Aim at the Top for 7nm|website=AnandTech|access-date=2018-11-15}} 53. ^{{cite web|url=http://www.faraday-tech.com/html/Product/IPProduct/ProcessorCores/index.htm|title=Processor Cores|publisher=Faraday Technology}} 54. ^{{Cite web|title=3rd Generation Intel XScale Microarchitecture: Developer’s Manual|url= http://download.intel.com/design/intelxscale/31628302.pdf|work=download.intel.com|publisher=Intel|accessdate=2 December 2010|date=May 2007}} 55. ^1 Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored; Anandtech. 56. ^{{cite web|url=https://www.qualcomm.com/news/snapdragon/2015/09/02/snapdragon-820-and-kryo-cpu-heterogeneous-computing-and-role-custom |title=Snapdragon 820 and Kryo CPU: heterogeneous computing and the role of custom compute |publisher=Qualcomm |date=2015-09-02 |accessdate=2015-09-06}} 57. ^{{cite web|url=http://www.anandtech.com/show/6292/iphone-5-a6-not-a15-custom-core|title=The iPhone 5's A6 SoC: Not A15 or A9, a Custom Apple Core Instead|publisher=AnandTech|date=15 September 2012|accessdate=15 September 2012|first=Anand|last=Lal Shimpi}} 58. ^1 {{cite web|url=http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-even-better-than-i-thought|title=Apple A8X's GPU - GAX6850, Even Better Than I Thought|first=Ryan|last=Smith|date=November 11, 2014|publisher=Anandtech}} 59. ^{{cite web |url=http://www.anandtech.com/show/9443/apple-refreshes-the-ipod-touch-with-a8-soc-and-new-camera |title=Apple Refreshes The iPod Touch With A8 SoC And New Cameras |first=Brandon |last=Chester |date=July 15, 2015 |publisher=Anandtech |accessdate=September 11, 2015}} 60. ^{{cite web |url=http://www.anandtech.com/show/9662/iphone-6s-and-iphone-6s-plus-preliminary-results |title=iPhone 6s and iPhone 6s Plus Preliminary Results |first=Joshua |last=Ho |date=September 28, 2015 |publisher=Anandtech |accessdate=December 18, 2015}} 61. ^{{cite web |url=http://www.anandtech.com/show/10685/the-iphone-7-and-iphone-7-plus-review |title=The iPhone 7 and iPhone 7 Plus Review |first=Joshua |last=Ho |date=September 28, 2015 |publisher=Anandtech |accessdate=September 14, 2017}} 62. ^{{cite web |url=https://en.wikichip.org/wiki/apple/ax/a11 |title=A11 Bionic - Apple |publisher=WikiChip |accessdate=February 1, 2019}} 63. ^{{cite web |url=https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/ |title=The iPhone XS & XS Max Review: Unveiling the Silicon Secrets |publisher=Anandtech |accessdate=February 11, 2019}} 64. ^http://www.pcworld.com/article/2464600/appliedmicros-64core-chip-could-spark-off-arm-core-war.html 65. ^http://www.anandtech.com/Gallery/Album/3847 66. ^http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/ 67. ^https://www.golem.de/news/nvidia-drive-xavier-fuer-autonome-autos-wird-ausgeliefert-1801-132035.html 68. ^https://wccftech.com/nvidia-drive-xavier-soc-detailed/ 69. ^http://www.anandtech.com/show/7990/amd-announces-k12-core-custom-64bit-arm-design-in-2016 70. ^{{cite web|url=http://www.anandtech.com/show/9781/samsung-announces-exynos-8890-with-cat1213-modem-and-custom-cpu|title=Samsung Announces Exynos 8890 with Cat.12/13 Modem and Custom CPU |work=AnandTech}} 71. ^{{cite web|url=https://www.anandtech.com/show/13199/hot-chips-2018-samsungs-exynosm3-cpu-architecture-deep-dive|title=Hot Chips 2018: Samsung’s Exynos-M3 CPU Architecture Deep Dive |work=AnandTech}} 72. ^ARM Company Milestones. 73. ^ARM Press Releases.
Further reading{{See also|ARM Cortex-M#Further reading|l1=List of books about ARM Cortex-M}}{{Application ARM-based chips}}{{Embedded ARM-based chips}}{{Classic ARM-based chips}}{{DEFAULTSORT:ARM microarchitectures}} 4 : Lists of microprocessors|ARM architecture|ARM cores|Microarchitectures |